传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成...传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。展开更多
谱聚类是利用样本数据集的相似性矩阵中特征向量的性质对样本数据集进行聚类.而随着数据规模的增加,谱聚类算法所耗时间会因为大规模的特征分解而明显增大.采用抽样方法可以有效降低算法所耗时间,但是简单随机抽样子集之间关联性太弱,...谱聚类是利用样本数据集的相似性矩阵中特征向量的性质对样本数据集进行聚类.而随着数据规模的增加,谱聚类算法所耗时间会因为大规模的特征分解而明显增大.采用抽样方法可以有效降低算法所耗时间,但是简单随机抽样子集之间关联性太弱,通常无法准确反映数据集的分布特征.基于此,设计了一种新的抽样策略,利用该方法进行多次抽样,生成多个既具有关联性又具有差异性的数据子集.在每个数据子集上分别利用NJW算法(由Ng A Y、Jordom M I和Weiss Y提出)进行谱聚类,并根据最近邻原则将聚类结果映射到全体数据集,生成若干基聚类,最后,将聚类结果集成,得到最终的聚类划分.实验证明,该方法与传统NJW算法以及简单抽样集成算法相比,算法的效率及有效性有了一定的提高.展开更多
文摘传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。
文摘谱聚类是利用样本数据集的相似性矩阵中特征向量的性质对样本数据集进行聚类.而随着数据规模的增加,谱聚类算法所耗时间会因为大规模的特征分解而明显增大.采用抽样方法可以有效降低算法所耗时间,但是简单随机抽样子集之间关联性太弱,通常无法准确反映数据集的分布特征.基于此,设计了一种新的抽样策略,利用该方法进行多次抽样,生成多个既具有关联性又具有差异性的数据子集.在每个数据子集上分别利用NJW算法(由Ng A Y、Jordom M I和Weiss Y提出)进行谱聚类,并根据最近邻原则将聚类结果映射到全体数据集,生成若干基聚类,最后,将聚类结果集成,得到最终的聚类划分.实验证明,该方法与传统NJW算法以及简单抽样集成算法相比,算法的效率及有效性有了一定的提高.