期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
硅酸盐仿生呼吸法改性杉木的工艺及性能 被引量:13
1
作者 李萍 张源 +3 位作者 左迎峰 吕建雄 王向军 吴义强 《林业工程学报》 CSCD 北大核心 2020年第6期57-63,共7页
杉木存在结构疏松、材质轻软、强度低等缺陷,对其进行浸渍改性是提高其性能的重要方法,然而传统有机树脂浸渍改性存在释放有毒害气体、易燃等危害人居环境安全的严重问题。鉴于此,采用无机物质对杉木进行浸渍改性可显著提高杉木力学性... 杉木存在结构疏松、材质轻软、强度低等缺陷,对其进行浸渍改性是提高其性能的重要方法,然而传统有机树脂浸渍改性存在释放有毒害气体、易燃等危害人居环境安全的严重问题。鉴于此,采用无机物质对杉木进行浸渍改性可显著提高杉木力学性能、尺寸稳定性、阻燃抑烟等性能,实现低值杉木的高值化利用。以硅酸钠为浸渍改性剂,硫酸盐、钙盐和磷酸盐复配物为固化剂,通过仿生呼吸法制得硅酸盐改性杉木。探讨了硅酸钠模数、硅酸钠质量分数、浸渍压力、浸渍时间、呼吸次数和呼吸频率(负压时间/正压时间)对改性杉木质量增加率和力学性能的影响,并采用扫描电子显微镜(SEM)和热重分析仪(TGA)对其微观形貌和耐热性能进行了表征。结果表明,当硅酸钠模数为3.4、硅酸钠浓度为30%、浸渍压力为0.5 MPa,浸渍时间为3 h、呼吸次数为6次、呼吸频率为2∶4时,改性杉木的质量增加率、抗弯强度、抗压强度和三切面硬度均为最佳。经过硅酸盐仿生改性后,改性杉木的横切面和纵切面都被硅酸盐较好填充,这也是杉木力学性能提高的原因。TGA分析表明,与杉木素材相比,改性杉木的耐热性能显著提高。 展开更多
关键词 杉木 木材改性 硅酸盐 仿生呼吸法 物理力学性能 耐热性能
在线阅读 下载PDF
硅镁凝胶强化人工林杉木的制备工艺优化及性能研究 被引量:2
2
作者 王燕 张源 +4 位作者 李萍 袁光明 李新功 王向军 左迎峰 《北京林业大学学报》 CAS CSCD 北大核心 2022年第8期125-133,共9页
【目的】为有效提升人工林杉木物理力学性能,以无机硅酸钠(Na_(2)SiO_(3))溶液为浸渍改性剂,硫酸镁(MgSO_(4))溶液为固化剂,采用真空–加压循环浸渍方法制备硅镁凝胶改性杉木,探究硫酸镁的添加量和不同浸渍工艺对改性杉木浸渍效果和性... 【目的】为有效提升人工林杉木物理力学性能,以无机硅酸钠(Na_(2)SiO_(3))溶液为浸渍改性剂,硫酸镁(MgSO_(4))溶液为固化剂,采用真空–加压循环浸渍方法制备硅镁凝胶改性杉木,探究硫酸镁的添加量和不同浸渍工艺对改性杉木浸渍效果和性能的影响,并优化浸渍工艺为硅镁凝胶改性杉木的规模生产提供理论依据。【方法】通过单因素试验探讨硫酸镁和硅酸钠的摩尔比、浸渍时间、浸渍压力与负/正压时间比4个因素对杉木试件改性效果的影响,在此基础上设计L_(9)(3^(4))正交试验优化浸渍工艺参数。由最佳工艺制得硅镁凝胶改性杉木与硅酸钠改性杉木,考察其质量增加率、顺纹抗压强度、硬度、吸水率、抗流失率、耐热性等性能和微观形貌表征,对比两种改性杉木之间及与未处理杉木的差异。【结果】综合单因素和正交试验结果得到:以硫酸镁和硅酸钠的摩尔比为1∶2的MgSO_(4)溶液和Na_(2)SiO_(3)溶液改性杉木,浸渍时间2 h、浸渍压力0.3 MPa和负/正压时间比2∶1的条件下制得的硅镁凝胶改性杉木性能最佳。对比未处理杉木,硅镁凝胶改性杉木的抗压强度、端面硬度、弦切面硬度和径切面硬度分别提升81.1%、73.1%、52.6%和37.2%,吸水率由129.3%降至73.3%。SEM结果显示硅镁凝胶改性杉木中硫酸镁成功浸入杉木管胞与硅酸钠反应并将其固化,导致其沉积物形貌不同,相比硅酸钠改性杉木其抗流失性提升了22.1%。TGA曲线中硅镁凝胶改性杉木的质量损失速率显著降低,由于无机组分的浸入,残余质量提升了27.09%。【结论】杉木经硅镁凝胶改性后,密度和强度增加,耐水性能改善,硬度、抗流失性及热稳定性显著提高,较硅酸钠改性杉木更具性能和应用方面的优势。 展开更多
关键词 人工林杉木 硅镁凝胶 浸渍工艺优化 抗压强度 抗流失性
在线阅读 下载PDF
基于呼吸浸渍法硅酸钠强化杉木木材工艺优化 被引量:5
3
作者 周亚 李萍 +4 位作者 张源 袁光明 王向军 吴义强 左迎峰 《材料导报》 EI CAS CSCD 北大核心 2020年第18期18171-18176,共6页
以杉木为改性基材、硅酸钠为浸渍改性剂,通过对木材交替施加“负压-正压”使其内部产生“呼液-吸液”的作用,从而改善木材的渗透性,并提高改性剂在木材中的浸注量以及浸渍效率。以硅酸钠的模数、浓度和浸渍时间作为试验因素,采用正交实... 以杉木为改性基材、硅酸钠为浸渍改性剂,通过对木材交替施加“负压-正压”使其内部产生“呼液-吸液”的作用,从而改善木材的渗透性,并提高改性剂在木材中的浸注量以及浸渍效率。以硅酸钠的模数、浓度和浸渍时间作为试验因素,采用正交实验法优选出硅酸钠浸渍杉木的最佳工艺条件。研究结果表明,在硅酸钠改性剂的模数为3.4、浓度为30%、浸渍时间为1 h时,杉木木材的浸渍效果最佳。对最优条件的改性材进行FTIR、XRD、TGA分析表征。结果发现,杉木改性材的游离羟基数量减少,缔合羟基数量增加,出现Si-O-Si的特征吸收峰,说明硅酸钠对杉木的改性不只是物理填充,还存在化学键的结合;由于硅酸钠的润胀作用和化学键的形成,改性杉木的结晶度降低;杉木改性材的热稳定性提高,起始分解温度降低,在炭化阶段的质量损失显著减少,最终的残留质量增加。 展开更多
关键词 杉木 硅酸钠 呼吸浸渍法 工艺优化 强化 尺寸稳定化
在线阅读 下载PDF
基于呼吸法的硅酸盐改性杉木工艺优化与耐火性能研究 被引量:1
4
作者 李萍 左迎峰 +3 位作者 王向军 袁光明 李贤军 吴义强 《材料导报》 EI CAS CSCD 北大核心 2021年第10期10197-10204,共8页
本工作探讨了工艺参数对硅酸盐改性杉木浸渍效果的影响,以获得较优的杉木呼吸浸渍工艺,并探究了改性杉木的耐火性能,可为扩大杉木应用范围和提高产品附加值提供技术支撑。以硅酸盐为浸渍改性剂,采用呼吸法制得硅酸盐浸渍改性杉木。通过... 本工作探讨了工艺参数对硅酸盐改性杉木浸渍效果的影响,以获得较优的杉木呼吸浸渍工艺,并探究了改性杉木的耐火性能,可为扩大杉木应用范围和提高产品附加值提供技术支撑。以硅酸盐为浸渍改性剂,采用呼吸法制得硅酸盐浸渍改性杉木。通过单因素实验法和响应曲面法对呼吸浸渍工艺进行了优化,并利用丁烷喷枪燃烧和锥形量热仪(CONE)对改性杉木的耐火性能进行了测试。响应曲面法分析表明,各工艺因素对硅酸盐改性杉木的增重率的影响大小依次为:浸渍压力>硅酸钠浓度>浸渍时间>呼吸次数,优化得到最佳浸渍工艺为硅酸钠溶液为31.60%(质量分数),浸渍时间为3.80 h,浸渍压力为0.7 MPa,呼吸次数为6次。燃烧实验发现,改性杉木燃烧火焰小。锥形量热分析表明改性杉木的热释放速率(HRR)、热释放总量(THR)、烟释放速率(SPR)和烟释放总量(TSP)都明显低于杉木素材,并且残余炭结构较完整。 展开更多
关键词 杉木 硅酸盐 呼吸法 耐火性能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部