期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应模糊广义回归神经网络的区域火灾数据推理预测 被引量:3
1
作者 金杉 金志刚 《计算机应用》 CSCD 北大核心 2015年第5期1499-1504,共6页
针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入... 针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入层使用改进模糊C-聚类算法,对初始数据进行权重修正,减少了噪声和孤立点对算法造成的影响,提高了预测值的逼近精度;引入自适应函数优化GRNN算法,调整迭代收敛的扩展速度、变化步长,找到全局最优解,改善了过早收敛问题,提高了搜索效率。实验结果表明,该算法代入已确定火灾损失数据,解决了依赖不稳定探测数据问题,并且具有良好的泛化能力、非线性逼近能力。 展开更多
关键词 自适应 模糊 广义回归神经网络 区域火灾数据 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部