跨项目社会推荐是一种将社交关系整合到推荐系统中的方法。社会化推荐中包含用户-项目交互图和社交网络图,用户是连接这两个图的桥梁,其表示学习对提升社会化推荐的性能至关重要。然而,现有方法主要使用用户或项目的静态属性和社交网络...跨项目社会推荐是一种将社交关系整合到推荐系统中的方法。社会化推荐中包含用户-项目交互图和社交网络图,用户是连接这两个图的桥梁,其表示学习对提升社会化推荐的性能至关重要。然而,现有方法主要使用用户或项目的静态属性和社交网络中的显式朋友关系来进行表示学习,用户和项目交互的时序信息及隐式朋友关系未得到充分利用。因此,在社会化推荐中,如何有效利用时序信息和社交信息成为重要的研究课题之一。文中通过建模用户的隐式朋友和项目的社交属性,提出了一种新颖的基于高阶和时序特征的图神经网络社会化推荐算法(Graph Neural Networks Social Recommendation Based on High-order and Temporal Features)模型,简称HTGSR。HTGSR首先利用门控递归单元对基于项目的用户表征进行建模,以反映用户的近期动态偏好,并定义一个高阶建模单元来提取用户的高阶连通特征,挖掘用户的隐式朋友信息;其次利用注意力机制获取基于社交关系的用户表征;然后提出不同的项目社交网络的构建方式,并利用注意力机制来获取项目表征;最后将用户和项目的潜在表征输入到多层感知机,完成用户对项目的评分预测。在两个数据集上进行详细的实验,并将实验结果与多种类型的推荐算法进行比较,结果表明HTGSR模型在两个数据集上的效果均较优。展开更多
随着网络技术发展,以网络虚拟化为手段解决TCP/IP网络体系结构僵化问题已成为未来网络领域发展的主流方向之一。SDN(software defined networking,软件定义网络)作为一种新兴的网络体系结构,为网络虚拟化提供了有效的解决方案。首先总...随着网络技术发展,以网络虚拟化为手段解决TCP/IP网络体系结构僵化问题已成为未来网络领域发展的主流方向之一。SDN(software defined networking,软件定义网络)作为一种新兴的网络体系结构,为网络虚拟化提供了有效的解决方案。首先总结了当前具有代表性的SDN网络虚拟化平台,并对比了SDN与传统网络环境中部署虚拟网的区别,然后针对SDN网络虚拟化平台中的虚拟网络映射问题,提出一种时延敏感的虚拟化控制器放置算法,最后通过实验验证了该算法在提高网络资源的利用效率的同时,保证了控制器与底层交换机的通信时延在可接受范围之内。展开更多
文摘跨项目社会推荐是一种将社交关系整合到推荐系统中的方法。社会化推荐中包含用户-项目交互图和社交网络图,用户是连接这两个图的桥梁,其表示学习对提升社会化推荐的性能至关重要。然而,现有方法主要使用用户或项目的静态属性和社交网络中的显式朋友关系来进行表示学习,用户和项目交互的时序信息及隐式朋友关系未得到充分利用。因此,在社会化推荐中,如何有效利用时序信息和社交信息成为重要的研究课题之一。文中通过建模用户的隐式朋友和项目的社交属性,提出了一种新颖的基于高阶和时序特征的图神经网络社会化推荐算法(Graph Neural Networks Social Recommendation Based on High-order and Temporal Features)模型,简称HTGSR。HTGSR首先利用门控递归单元对基于项目的用户表征进行建模,以反映用户的近期动态偏好,并定义一个高阶建模单元来提取用户的高阶连通特征,挖掘用户的隐式朋友信息;其次利用注意力机制获取基于社交关系的用户表征;然后提出不同的项目社交网络的构建方式,并利用注意力机制来获取项目表征;最后将用户和项目的潜在表征输入到多层感知机,完成用户对项目的评分预测。在两个数据集上进行详细的实验,并将实验结果与多种类型的推荐算法进行比较,结果表明HTGSR模型在两个数据集上的效果均较优。
文摘随着网络技术发展,以网络虚拟化为手段解决TCP/IP网络体系结构僵化问题已成为未来网络领域发展的主流方向之一。SDN(software defined networking,软件定义网络)作为一种新兴的网络体系结构,为网络虚拟化提供了有效的解决方案。首先总结了当前具有代表性的SDN网络虚拟化平台,并对比了SDN与传统网络环境中部署虚拟网的区别,然后针对SDN网络虚拟化平台中的虚拟网络映射问题,提出一种时延敏感的虚拟化控制器放置算法,最后通过实验验证了该算法在提高网络资源的利用效率的同时,保证了控制器与底层交换机的通信时延在可接受范围之内。