期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测
被引量:
46
1
作者
叶剑华
曹旌
+1 位作者
杨理
罗凤章
《电网技术》
EI
CSCD
北大核心
2022年第7期2610-2618,共9页
针对用户级综合能源系统(integrated energy system,IES)多元负荷波动性和随机性较强、精确预测难度较大的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和多模型融合的超短期负荷预测方法。首先采用VMD将IES...
针对用户级综合能源系统(integrated energy system,IES)多元负荷波动性和随机性较强、精确预测难度较大的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和多模型融合的超短期负荷预测方法。首先采用VMD将IES各类负荷序列分解成不同的本征模态函数(intrinsic mode function,IMF);然后将各IMF结合气象信息构造不同的特征集,分别输入支持向量回归机(support vector regression,SVR)、长短期记忆(long short-term memory,LSTM)网络和一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)进行预测;最后,将3个模型的预测结果输入SVR进行融合得到最终的预测值,并采用和声搜索(harmony search,HS)算法优化SVR的参数。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提出的多模型融合方法优于单模型预测方法,对电、冷、热负荷均具有最好的预测精度。
展开更多
关键词
综合能源系统
负荷预测
变分模态分解
支持向量回归机
长短期记忆网络
卷积神经网络
在线阅读
下载PDF
职称材料
题名
基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测
被引量:
46
1
作者
叶剑华
曹旌
杨理
罗凤章
机构
天津市
信息
传
感
与智能
控制
重点
实验室
(
天津职业技术师范大学
)
国网
天津市
电力公司
国网重庆永川供电公司
智能
电网教育部
重点
实验室
(
天津
大学
)
出处
《电网技术》
EI
CSCD
北大核心
2022年第7期2610-2618,共9页
基金
国家自然科学基金项目(51977140)。
文摘
针对用户级综合能源系统(integrated energy system,IES)多元负荷波动性和随机性较强、精确预测难度较大的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和多模型融合的超短期负荷预测方法。首先采用VMD将IES各类负荷序列分解成不同的本征模态函数(intrinsic mode function,IMF);然后将各IMF结合气象信息构造不同的特征集,分别输入支持向量回归机(support vector regression,SVR)、长短期记忆(long short-term memory,LSTM)网络和一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)进行预测;最后,将3个模型的预测结果输入SVR进行融合得到最终的预测值,并采用和声搜索(harmony search,HS)算法优化SVR的参数。通过某用户级IES的实际数据对所提方法的有效性进行了验证,结果表明,所提出的多模型融合方法优于单模型预测方法,对电、冷、热负荷均具有最好的预测精度。
关键词
综合能源系统
负荷预测
变分模态分解
支持向量回归机
长短期记忆网络
卷积神经网络
Keywords
integrated energy system
load forecasting
variational mode decomposition
support vector regression
long short-term memory network
convolutional neural network
分类号
TM721 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测
叶剑华
曹旌
杨理
罗凤章
《电网技术》
EI
CSCD
北大核心
2022
46
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部