期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
AGCFN:基于图神经网络多层网络社团检测模型 被引量:1
1
作者 陈龙 张振宇 +1 位作者 李晓明 白宏鹏 《计算机应用研究》 CSCD 北大核心 2024年第10期2926-2931,共6页
基于图神经网络的多层网络社团检测方法面临以下两个挑战。一是如何有效利用多层网络的节点内容信息,二是如何有效利用多层网络的层间关系。因此,提出多层网络社团检测模型AGCFN(autoencoder-enhanced graph convolutional fusion netwo... 基于图神经网络的多层网络社团检测方法面临以下两个挑战。一是如何有效利用多层网络的节点内容信息,二是如何有效利用多层网络的层间关系。因此,提出多层网络社团检测模型AGCFN(autoencoder-enhanced graph convolutional fusion network)。首先通过自编码器独立提取每个网络层的节点内容信息,通过传递算子将提取到的节点内容信息传递给图自编码器进行当前网络层节点内容信息与拓扑结构信息的融合,从而得到当前网络层每个节点的表示,这种方法充分利用了网络的节点内容信息与拓扑结构信息。对于得到的节点表示,通过模块度最大化模块和图解码器对其进行优化。其次,通过多层信息融合模块将每个网络层提取到的节点表示进行融合,得到每个节点的综合表示。最后,通过自训练机制训练模型并得到社团检测结果。与6个模型在三个数据集上进行对比,ACC与NMI评价指标有所提升,验证了AGCFN的有效性。 展开更多
关键词 多层网络 社团检测 图神经网络 自编码器 自监督学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部