期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合密度图回归与检测的密集计数研究
1
作者 高洁 赵心馨 +5 位作者 于健 徐天一 潘丽 杨珺 喻梅 李雪威 《计算机科学与探索》 CSCD 北大核心 2024年第1期127-137,共11页
针对基于检测以及基于密度图两种主流的密集计数方法中,基于检测的方法召回率较低、基于密度图的方法缺失目标物体位置信息的问题,将检测任务与回归任务相结合后提出一种基于密度图回归的检测计数方法,可以实现对密集场景中目标物体的... 针对基于检测以及基于密度图两种主流的密集计数方法中,基于检测的方法召回率较低、基于密度图的方法缺失目标物体位置信息的问题,将检测任务与回归任务相结合后提出一种基于密度图回归的检测计数方法,可以实现对密集场景中目标物体的计数以及定位,对两种方法进行优势互补,在提高召回率的同时,实现标定所有目标物体的位置信息。为提取出更加丰富的特征信息以面对复杂的数据场景,网络提出特征金字塔优化模块,该模块纵向融合底层高分辨特征与顶层抽象语义特征,横向融合同尺寸的特征,丰富目标物体的语义表达;考虑到密集计数场景中目标物体所占像素比例较低的问题,提出一种针对小目标的注意力机制,通过对输入图像构建掩膜以增强网络对目标物体的注意力,从而提高网络的检测敏感性。实验结果表明,所提出方法在保持准确率基本不变的情况下,大幅度提高了召回率,同时可准确标定目标物体位置,有效提供输入目标图像的计数以及定位信息,在工业以及生态等各种领域具有广泛的应用前景。 展开更多
关键词 密集计数 目标检测 深度学习 密度图回归 特征金字塔
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部