针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirica...针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。展开更多
空天地融合车载网场景下,无人机设备由于电池容量和能源有限,无法为任务卸载提供长期有效支持;低轨卫星受资源成本以及通信延迟、时延抖动的影响难以为大规模车联网任务提供稳定的高带宽通信服务。针对空天地融合车载网络场景下无人机...空天地融合车载网场景下,无人机设备由于电池容量和能源有限,无法为任务卸载提供长期有效支持;低轨卫星受资源成本以及通信延迟、时延抖动的影响难以为大规模车联网任务提供稳定的高带宽通信服务。针对空天地融合车载网络场景下无人机和低轨卫星的资源优化问题,提出了一种基于多任务深度强化辅助学习(Multi-Task Deep Reinforcement and Auxiliary Learning,MTDRAL)的任务卸载以及功率调整、缓存决策的方案。首先构建了任务切分与传输模型、时延模型、能耗模型、服务器计算与缓存模型和问题模型;然后,基于对任务处理时延、服务器能耗以及缓存命中率的综合考虑,给出了基于MTDRAL的任务卸载及资源调度方案;最后将所提方案与随机卸载策略方案、成功率贪婪决策方案、基于柔性动作-评价算法的多网络深度强化学习的卸载方案、基于深度确定性策略梯度算法的多网络深度强化学习的卸载方案进行了对比实验。实验结果表明:所提方案在服务器数量为14、车载终端数量为10时,综合得分相较于4种对比方案,分别领先约134.41%,31.32%,38.93%,29.49%;所提方案具有较好的性能,能更好地满足空天地融合车载网场景下的任务卸载需求。展开更多
随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素...随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。展开更多
目前,基于时间序列分析的结构损伤检测方法中,存在时间序列模型难以建立统计指标与损伤程度定量关系的问题。针对此问题,提出基于信息熵的结构损伤识别方法,该方法能同时检测损伤的位置和度量损伤程度。以获取的加速度振动响应构建自回...目前,基于时间序列分析的结构损伤检测方法中,存在时间序列模型难以建立统计指标与损伤程度定量关系的问题。针对此问题,提出基于信息熵的结构损伤识别方法,该方法能同时检测损伤的位置和度量损伤程度。以获取的加速度振动响应构建自回归移动平均模型(Autoregressive Moving Average model,ARMA),并从理论上推导自回归系数与结构振动频率的关系。通过建立时间序列模型与损伤程度之间的联系,再引入信息熵实现对结构节点信息的量化。构建损伤程度特征指标,利用损伤前后结构损伤指标的变化量实现对损伤结构的位置和损伤程度的检测。以简支梁结构实验模型和IASC-ASCE基准结构的测量数据为例,从不同损伤程度下的单一损伤和多重损伤等场景对方法的有效性进行验证,并对损伤的结构进行定位和定量分析。研究结果表明,损伤位置处的损伤指标值远大于未损伤位置,能够准确定位损伤,且不同损伤程度下的损伤指标值增幅也存在明显差异。本文提出的方法对单一损伤和多重损伤均可进行损伤定位,并在损伤定位的同时实现损伤程度的量化。展开更多
针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RR...针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RRT算法进行优化改进,提出了IRRT(improved rapid-exploration random tree)算法。首先将原有的固定步长改为动态步长,通过判断与目标点的远近界定步长大小,避免了节点的盲目扩张;其次,对随机采样点的生成范围进行了约束,并设置一个同时考虑目标点和随机点的权重来解决传统RRT算法中新生成点仅由随机采样点单一决定的问题;算法陷入最小值时选取随机扰动策略进行逃脱;最后在全局路径的相邻节点间使用动态窗口法进行局部避障。实验仿真结果表明IRRT算法比传统RRT算法在搜索速度上快了3倍多,平均路径比改进前减少25.56%,平均节点减少8.92%,加入动态窗口法后有效提高了机器人实时避障能力,更适合多变的室内环境使用。展开更多
文摘针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。
文摘空天地融合车载网场景下,无人机设备由于电池容量和能源有限,无法为任务卸载提供长期有效支持;低轨卫星受资源成本以及通信延迟、时延抖动的影响难以为大规模车联网任务提供稳定的高带宽通信服务。针对空天地融合车载网络场景下无人机和低轨卫星的资源优化问题,提出了一种基于多任务深度强化辅助学习(Multi-Task Deep Reinforcement and Auxiliary Learning,MTDRAL)的任务卸载以及功率调整、缓存决策的方案。首先构建了任务切分与传输模型、时延模型、能耗模型、服务器计算与缓存模型和问题模型;然后,基于对任务处理时延、服务器能耗以及缓存命中率的综合考虑,给出了基于MTDRAL的任务卸载及资源调度方案;最后将所提方案与随机卸载策略方案、成功率贪婪决策方案、基于柔性动作-评价算法的多网络深度强化学习的卸载方案、基于深度确定性策略梯度算法的多网络深度强化学习的卸载方案进行了对比实验。实验结果表明:所提方案在服务器数量为14、车载终端数量为10时,综合得分相较于4种对比方案,分别领先约134.41%,31.32%,38.93%,29.49%;所提方案具有较好的性能,能更好地满足空天地融合车载网场景下的任务卸载需求。
文摘随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。
文摘目前,基于时间序列分析的结构损伤检测方法中,存在时间序列模型难以建立统计指标与损伤程度定量关系的问题。针对此问题,提出基于信息熵的结构损伤识别方法,该方法能同时检测损伤的位置和度量损伤程度。以获取的加速度振动响应构建自回归移动平均模型(Autoregressive Moving Average model,ARMA),并从理论上推导自回归系数与结构振动频率的关系。通过建立时间序列模型与损伤程度之间的联系,再引入信息熵实现对结构节点信息的量化。构建损伤程度特征指标,利用损伤前后结构损伤指标的变化量实现对损伤结构的位置和损伤程度的检测。以简支梁结构实验模型和IASC-ASCE基准结构的测量数据为例,从不同损伤程度下的单一损伤和多重损伤等场景对方法的有效性进行验证,并对损伤的结构进行定位和定量分析。研究结果表明,损伤位置处的损伤指标值远大于未损伤位置,能够准确定位损伤,且不同损伤程度下的损伤指标值增幅也存在明显差异。本文提出的方法对单一损伤和多重损伤均可进行损伤定位,并在损伤定位的同时实现损伤程度的量化。
文摘针对建筑机器人在施工现场获取地图信息时间长且需要规划出一条全局的、能实时避障的路径等问题,该文提出了一种应用建筑信息模型(building information model,BIM)技术建立导航地图并进行路径规划的算法。根据BIM模型中的信息对传统RRT算法进行优化改进,提出了IRRT(improved rapid-exploration random tree)算法。首先将原有的固定步长改为动态步长,通过判断与目标点的远近界定步长大小,避免了节点的盲目扩张;其次,对随机采样点的生成范围进行了约束,并设置一个同时考虑目标点和随机点的权重来解决传统RRT算法中新生成点仅由随机采样点单一决定的问题;算法陷入最小值时选取随机扰动策略进行逃脱;最后在全局路径的相邻节点间使用动态窗口法进行局部避障。实验仿真结果表明IRRT算法比传统RRT算法在搜索速度上快了3倍多,平均路径比改进前减少25.56%,平均节点减少8.92%,加入动态窗口法后有效提高了机器人实时避障能力,更适合多变的室内环境使用。