期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的城市积水深度预报研究
1
作者 智协飞 崔碧瑶 季焱 《南京信息工程大学学报》 CAS 北大核心 2024年第6期771-781,共11页
随着全球气候变化的不断加剧和城市化的快速发展,极端降雨过程导致的城市积涝灾害愈演愈烈,已成为世界各国许多城市面临的严重挑战.基于2021年5—8月浙江省诸暨市75个国家自动气象观测站的降雨量数据和典型积水点的积水深度数据,使用深... 随着全球气候变化的不断加剧和城市化的快速发展,极端降雨过程导致的城市积涝灾害愈演愈烈,已成为世界各国许多城市面临的严重挑战.基于2021年5—8月浙江省诸暨市75个国家自动气象观测站的降雨量数据和典型积水点的积水深度数据,使用深度学习模型长短时记忆网络(Long Short Term Memory,LSTM)构建降雨量与积水深度的关系模型,提供未来间隔15 min的2 h内城市积涝水位预报,并与随机森林(Random Forest,RF)和人工神经网络(Artificial Neural Network,ANN)模型预报结果进行对比.预报结果表明,LSTM使用前4 h的积水与降雨量资料进行未来2 h积水预报的结果最优,均方根误差(RMSE)小于5.6 cm,相关系数(CC)大于0.93,纳什效率系数(NSE)大于0.86,预报效果优于RF和ANN,所构建的积水预报人工智能模型具有较好的预报效果. 展开更多
关键词 深度学习 长短时记忆网络 城市积涝 降雨量 积水深度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部