期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混合神经网络和注意力机制的生物医学事件触发词识别方法
1
作者 任永功 林禹竹 +2 位作者 唐玉洁 于博 何馨宇 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3206-3216,共11页
生物医学事件作为生物医学文本挖掘的重要组成部分,在生物医学研究和疾病的预防中发挥着重要作用.触发词识别是生物医学事件抽取的关键和前提步骤,旨在提取描述事件类型的关键词.传统方法在特征提取过程中过分依赖自然语言处理工具,导... 生物医学事件作为生物医学文本挖掘的重要组成部分,在生物医学研究和疾病的预防中发挥着重要作用.触发词识别是生物医学事件抽取的关键和前提步骤,旨在提取描述事件类型的关键词.传统方法在特征提取过程中过分依赖自然语言处理工具,导致耗费人工成本.另外,由于生物医学文献的特殊性—长文本语句多,导致长距离依赖问题比较明显.为了解决这些问题,我们提出了一种混合结构,由残差卷积神经网络和双向长短期神经网络、混合神经网络和多头注意力机制组成.该模型利用残差卷积神经网络提取单词级特征并利用双向长短期神经网络提取上下文语义信息.此外,本文通过空间域滑动窗口将长句划分为等长短句,在不破坏上下文信息的前提下,避免了长距离依赖.实验结果表明,本文提出的方法在生物医学事件抽取通用语料MLEE(Multi-Level Event Extraction)上取得了较好的效果,F值达到81.15%. 展开更多
关键词 生物医学事件抽取 触发词识别 ReCNN-BiLSTM 空间域滑动窗口 MUH-Attention机制 混合神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部