针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识...针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识图谱高阶语义信息,涵盖知识图谱构建、特征提取网络构建与多跳扩散模型构建三部分内容。利用用户特征和项目特征构建知识图谱;深入分析用户兴趣、偏好和历史行为等信息,构建用户画像和兴趣模型;提出特征提取网络捕获深层次语义信息,通过本文模型的计算得到预测值。在两个公开数据集的对比实验表明,MultiHop-GDN能够同时实现用户和项目的高阶建模,与其他代表论文的模型相比有良好的推荐效果。展开更多
随着能源行业的快速发展和技术革新,大量的专业术语和表达方式不断更新,新词不断涌现。然而,传统的新词发现方法通常依赖于词典或规则,且难以高效率地处理和更新大量的专业术语,特别是在快速变化的能源领域。因此,结合能源领域文本数据...随着能源行业的快速发展和技术革新,大量的专业术语和表达方式不断更新,新词不断涌现。然而,传统的新词发现方法通常依赖于词典或规则,且难以高效率地处理和更新大量的专业术语,特别是在快速变化的能源领域。因此,结合能源领域文本数据特性,提出了一种融合N-Gram和多重注意力机制的能源领域新词发现方法(new word discovery method in the energy field combining N-Gram and multiple attention mechanism, ENFM)。该方法首先利用N-Gram模型对能源领域的文本数据进行初步处理,通过统计和分析词频来生成新词候选列表。随后,引入融合多重注意力机制的ERNIE-BiLSTM-CRF模型,以进一步提升新词发现的准确性和效率。与传统的新词发现技术相比,在新词的准确识别和整体效率上均有显著提升,将其于能源领域政策文本数据集,准确率、召回率和F1分别为95.71%、95.56%、95.63%。实验结果表明,该方法能够准确地在能源领域的大量文本数据中识别新词,有效识别出能源领域特有的词汇和表达方式,显著提高了中文分词任务中对能源领域专业术语的识别能力。展开更多
文摘针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识图谱高阶语义信息,涵盖知识图谱构建、特征提取网络构建与多跳扩散模型构建三部分内容。利用用户特征和项目特征构建知识图谱;深入分析用户兴趣、偏好和历史行为等信息,构建用户画像和兴趣模型;提出特征提取网络捕获深层次语义信息,通过本文模型的计算得到预测值。在两个公开数据集的对比实验表明,MultiHop-GDN能够同时实现用户和项目的高阶建模,与其他代表论文的模型相比有良好的推荐效果。
文摘随着能源行业的快速发展和技术革新,大量的专业术语和表达方式不断更新,新词不断涌现。然而,传统的新词发现方法通常依赖于词典或规则,且难以高效率地处理和更新大量的专业术语,特别是在快速变化的能源领域。因此,结合能源领域文本数据特性,提出了一种融合N-Gram和多重注意力机制的能源领域新词发现方法(new word discovery method in the energy field combining N-Gram and multiple attention mechanism, ENFM)。该方法首先利用N-Gram模型对能源领域的文本数据进行初步处理,通过统计和分析词频来生成新词候选列表。随后,引入融合多重注意力机制的ERNIE-BiLSTM-CRF模型,以进一步提升新词发现的准确性和效率。与传统的新词发现技术相比,在新词的准确识别和整体效率上均有显著提升,将其于能源领域政策文本数据集,准确率、召回率和F1分别为95.71%、95.56%、95.63%。实验结果表明,该方法能够准确地在能源领域的大量文本数据中识别新词,有效识别出能源领域特有的词汇和表达方式,显著提高了中文分词任务中对能源领域专业术语的识别能力。