针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识...针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识图谱高阶语义信息,涵盖知识图谱构建、特征提取网络构建与多跳扩散模型构建三部分内容。利用用户特征和项目特征构建知识图谱;深入分析用户兴趣、偏好和历史行为等信息,构建用户画像和兴趣模型;提出特征提取网络捕获深层次语义信息,通过本文模型的计算得到预测值。在两个公开数据集的对比实验表明,MultiHop-GDN能够同时实现用户和项目的高阶建模,与其他代表论文的模型相比有良好的推荐效果。展开更多
文摘针对基于知识图谱的推荐系统中存在的高阶建模困难与用户特征建模不足的问题,提出基于多跳机制的扩散图谱推荐模型(a diffusion map recommendation model based on multi-hop mechanism,MultiHop-GDN)。该模型通过端到端方法挖掘知识图谱高阶语义信息,涵盖知识图谱构建、特征提取网络构建与多跳扩散模型构建三部分内容。利用用户特征和项目特征构建知识图谱;深入分析用户兴趣、偏好和历史行为等信息,构建用户画像和兴趣模型;提出特征提取网络捕获深层次语义信息,通过本文模型的计算得到预测值。在两个公开数据集的对比实验表明,MultiHop-GDN能够同时实现用户和项目的高阶建模,与其他代表论文的模型相比有良好的推荐效果。