溢油事故带来的海洋污染问题日益严重,SAR图像快速准确地自动识别为溢油事故的处理和决策支持提供了重要前提。为了获得更高的油膜识别准确率,提出了一种基于曲波变换(Curvelet)和局部线性嵌入(Local Linear Embedding,LLE)算法的SAR图...溢油事故带来的海洋污染问题日益严重,SAR图像快速准确地自动识别为溢油事故的处理和决策支持提供了重要前提。为了获得更高的油膜识别准确率,提出了一种基于曲波变换(Curvelet)和局部线性嵌入(Local Linear Embedding,LLE)算法的SAR图像特征提取方法。首先,利用Curvelet对图像进行分解,选取包含了主要信息的低频分量作为新的图像矩阵;然后,利用LLE进行非线性降维,提取图像分类特征。为了验证提取特征的有效性,所提的Curvelet-LLE算法与PCA、LLE、等距特征映射(Isomap)、Curvelet变换和Fisher判别分析(Curvelet-KFD)、Wavelet-LLE等特征提取算法,利用K最近邻和支持向量机分类器分别进行了对比实验。实验结果表明,Curvelet-LLE算法能更有效地提取SAR图像油膜识别的分类鉴别特征,其准确率相对较高,具有较好的实用性。展开更多
文摘深度学习模型中的特征金字塔网络(Feature Pyramid Network,FPN)常被用作合成孔径雷达(Synthetic Aperture Radar,SAR)图像中多目标船舶的检测。针对复杂场景下多目标船舶检测问题,提出了一种基于改进锚点框的FPN模型。首先将特征金字塔模型嵌入传统的RPN(Region Proposal Network)并映射成新的特征空间用于目标检测,然后利用基于形状相似度距离(Shape Similar Distance,SSD)度量的Kmeans聚类算法优化FPN的初始锚点框,并使用SAR船舶数据集测试。实验结果表明,所提算法目标检测精确率达到98.62%,在复杂场景下与YOLO、Faster RCNN、FPN based on VGG/ResNet等模型进行对比,模型准确率提高,整体性能更好。
文摘溢油事故带来的海洋污染问题日益严重,SAR图像快速准确地自动识别为溢油事故的处理和决策支持提供了重要前提。为了获得更高的油膜识别准确率,提出了一种基于曲波变换(Curvelet)和局部线性嵌入(Local Linear Embedding,LLE)算法的SAR图像特征提取方法。首先,利用Curvelet对图像进行分解,选取包含了主要信息的低频分量作为新的图像矩阵;然后,利用LLE进行非线性降维,提取图像分类特征。为了验证提取特征的有效性,所提的Curvelet-LLE算法与PCA、LLE、等距特征映射(Isomap)、Curvelet变换和Fisher判别分析(Curvelet-KFD)、Wavelet-LLE等特征提取算法,利用K最近邻和支持向量机分类器分别进行了对比实验。实验结果表明,Curvelet-LLE算法能更有效地提取SAR图像油膜识别的分类鉴别特征,其准确率相对较高,具有较好的实用性。