期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
教育大数据中认知跟踪模型研究进展 被引量:21
1
作者 胡学钢 刘菲 卜晨阳 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2523-2546,共24页
教育信息化的不断推进和在线教育的蓬勃发展产生了海量的教育数据,如何挖掘和分析教育大数据成为了教育领域和大数据知识工程领域亟待解决的问题.认知跟踪模型通过获取学生作答习题的得分表现,追踪学生随时间变化的认知状态,从而预测学... 教育信息化的不断推进和在线教育的蓬勃发展产生了海量的教育数据,如何挖掘和分析教育大数据成为了教育领域和大数据知识工程领域亟待解决的问题.认知跟踪模型通过获取学生作答习题的得分表现,追踪学生随时间变化的认知状态,从而预测学生在未来时间的作答表现.对教育大数据中认知跟踪模型进行了回顾、分析和展望.首先从模型的原理、步骤和方法等维度详细介绍了认知跟踪模型,包括基于贝叶斯方法和深度学习方法2类认知跟踪模型.同时,从学生作答表现预测、认知状态评估、心理因素分析、习题序列分析和编程练习5个方面阐述认知跟踪模型的应用情景.最后,以经典的贝叶斯认知跟踪模型和深度认知跟踪模型为例分析了2类模型的优缺点,并探讨和展望认知跟踪模型未来可能的研究方向. 展开更多
关键词 教育大数据 认知跟踪 学生模型 贝叶斯认知跟踪 深度学习
在线阅读 下载PDF
从知识图谱到数据中台:华谱系统 被引量:29
2
作者 吴信东 盛绍静 +2 位作者 蒋婷婷 卜晨阳 吴明辉 《自动化学报》 EI CSCD 北大核心 2020年第10期2045-2059,共15页
针对碎片化的各姓氏家谱数据,华谱系统通过构建家谱知识图谱的数据中台,能够解决数据孤岛、烟囱式开发等问题."数据中台"是一个源自国内的新近技术概念,在华谱系统建设中,我们通过家谱知识图谱的构建和应用,对这个概念进行了... 针对碎片化的各姓氏家谱数据,华谱系统通过构建家谱知识图谱的数据中台,能够解决数据孤岛、烟囱式开发等问题."数据中台"是一个源自国内的新近技术概念,在华谱系统建设中,我们通过家谱知识图谱的构建和应用,对这个概念进行了正式定义.基于这个定义和对应的7项核心功能,本文提出一种用于家谱数据分析的数据中台建设架构Huapu-CP(华谱系统),并通过该架构详细介绍面向家谱领域的数据中台核心技术,分析数据中台构建的关键问题. 展开更多
关键词 家谱建设 数据中台 数据治理 知识图谱
在线阅读 下载PDF
半监督偏多标签特征选择
3
作者 武优 王静 +1 位作者 李培培 胡学钢 《计算机科学》 北大核心 2025年第4期161-168,共8页
多标签特征选择是一种有效的特征降维技术,旨在从原始特征空间中筛选出具有区分力的特征子集。然而,传统的多标签特征选择方法面临着标注精度下降的问题。在真实的数据中,实例被候选标签集标注,候选标签除相关标签外,还混杂着噪声标签,... 多标签特征选择是一种有效的特征降维技术,旨在从原始特征空间中筛选出具有区分力的特征子集。然而,传统的多标签特征选择方法面临着标注精度下降的问题。在真实的数据中,实例被候选标签集标注,候选标签除相关标签外,还混杂着噪声标签,即偏多标签数据。现有的多标签特征选择算法通常假设训练样本被精确标注,或者只考虑标签缺失的情况。并且,在现实情形中,大规模高维多标签数据集往往只有小部分数据被标注。因此,文中提出一种新颖的半监督偏多标签特征选择方法。首先,针对偏多标签问题,从已知标签的样本中学习标签之间的真实关系,然后利用流形正则化技术维持特征空间与标签空间的结构一致性。其次,针对标签缺失问题,通过标签传播算法来增强标签信息。另外,针对高维特征问题,对映射矩阵施加低秩约束,以揭示标签间的隐性联系,并通过引入l_(2,1)范数约束来选择具有较强区分能力的特征。实验结果表明,与现有的半监督多标签特征选择方法相比,所提方法在性能上存在显著的优势。 展开更多
关键词 多标签特征选择 偏多标签学习 半监督学习 特征降维 噪声标签
在线阅读 下载PDF
基于核极限学习机的多标签数据流集成分类方法 被引量:16
4
作者 张海翔 李培培 胡学钢 《数据采集与处理》 CSCD 北大核心 2022年第1期183-193,共11页
极限学习机因具有高效处理、性能优越以及更少人工参数设定等优点,已成功应用于批处理多标签分类问题。然而,实际应用领域涌现的数据流呈现海量快速、多标签和概念漂移等特点,使得这些传统的多标签分类算法面临精度与时空的挑战。本文... 极限学习机因具有高效处理、性能优越以及更少人工参数设定等优点,已成功应用于批处理多标签分类问题。然而,实际应用领域涌现的数据流呈现海量快速、多标签和概念漂移等特点,使得这些传统的多标签分类算法面临精度与时空的挑战。本文提出一种基于核极限学习机的多标签数据流集成分类方法。首先,为适应数据流环境,利用滑动窗口机制将数据流划分为数据块,在前k个数据块上构建k个核极限学习机的集成分类模型;同时,考虑类标签相关性,利用Apriori算法得到每个数据块的标签间的关联规则,并将关联规则中的同现标签的置信度引入到基于集成模型的预测过程中,以提高整体的分类精度;其次,引入MUENLForeset模型检测新到来的数据块是否发生概念漂移,对分类器设置损失函数更新集成模型以适应概念漂移问题。最后,在实际多标签数据上的大量实验表明:与经典多标签批处理和流数据分类方法相比,所提方法不仅能适应多标签数据流中的概念漂移问题,同时在分类精度上具有显著优势。 展开更多
关键词 多标签分类 数据流 核极限学习机 标签相关性 概念漂移
在线阅读 下载PDF
数据治理技术 被引量:200
5
作者 吴信东 董丙冰 +1 位作者 堵新政 杨威 《软件学报》 EI CSCD 北大核心 2019年第9期2830-2856,共27页
随着信息技术的普及,人类产生的数据量正在以指数级的速度增长,如此海量的数据就要求利用新的方法来管理.数据治理是将一个机构(企业或政府部门)的数据作为战略资产来管理,需要从数据收集到处理应用的一套管理机制,以期提高数据质量,实... 随着信息技术的普及,人类产生的数据量正在以指数级的速度增长,如此海量的数据就要求利用新的方法来管理.数据治理是将一个机构(企业或政府部门)的数据作为战略资产来管理,需要从数据收集到处理应用的一套管理机制,以期提高数据质量,实现广泛的数据共享,最终实现数据价值最大化.目前,各行各业对大数据的研究比较火热,但对于大数据治理的研究还处于起步阶段,一个组织的正确决策离不开良好的数据治理.首先介绍数据治理和大数据治理的概念、发展以及应用的必要性;其次,对已有的数据治理技术数据规范、数据清洗、数据交换和数据集成进行具体的分析,并介绍了数据治理成熟度和数据治理框架设计;在此基础上,提出了大数据 HAO 治理模型.该模型以支持人类智能(HI)、人工智能(AI)和组织智能(OI)的三者协同为目标,再以公安的数据治理为例介绍HAO 治理的应用;最后是对数据治理的总结和展望. 展开更多
关键词 数据治理 数据规范 数据清洗 数据交换 数据集成
在线阅读 下载PDF
碎片化家谱数据的融合技术 被引量:7
6
作者 吴信东 李娇 +1 位作者 周鹏 卜晨阳 《软件学报》 EI CSCD 北大核心 2021年第9期2816-2836,共21页
家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关... 家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关联等隐含信息.在大数据知识工程BigKE模型的基础上,提出了一个结合HAO智能模型的碎片化数据融合框架FDF-HAO(fragmented data fusion with human intelligence,artificial intelligence and organizational intelligence),阐述了架构中每层的作用、关键技术和需要解决的问题,并以家谱数据为例,验证了该数据融合框架的有效性.最后,对碎片化数据融合的前景进行展望. 展开更多
关键词 碎片化数据 数据融合 家谱数据 多源异构 HAO智能模型
在线阅读 下载PDF
MDataEE:多因素时间序列数据的分析与可视化
7
作者 路强 葛逸凡 +2 位作者 余烨 黎杰 饶金刚 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第10期1613-1625,共13页
多因素时间序列数据及异常数据的可视化对于提高决策分析效率等问题具有十分重要的意义.由于不同种类数据具有不同的特征,传统的可视化方法在绘制此类数据时会出现图像复杂、用户观察效率低的情况.为此,提出一种高效探索多因素时间序列... 多因素时间序列数据及异常数据的可视化对于提高决策分析效率等问题具有十分重要的意义.由于不同种类数据具有不同的特征,传统的可视化方法在绘制此类数据时会出现图像复杂、用户观察效率低的情况.为此,提出一种高效探索多因素时间序列数据及异常数据的可视化方法MDataEE.首先,使用可视化映射简化多种类数据的视图;其次,根据数据的密度和重要性以及视觉感知来优化坐标轴的绘制;最后,增加了一些交互操作,通过图像显隐及生成对比视图等操作,方便用户根据需求自由探索不同方面的数据.在真实PM2.5数据集上进行的实验结果表明,与传统可视化方法相比,所提出的方法能够生成简洁且易于分析的可视化视图,在分析异常数据变化的趋势及原因等方面更有优势,可提高用户理解并分析异常的多因素时间序列数据的效率. 展开更多
关键词 多因素时间序列数据 异常数据 可视化设计 可视化分析
在线阅读 下载PDF
基于跨尺度相似先验的遥感图像时空融合算法
8
作者 方帅 万旗 曹洋 《电子学报》 EI CAS CSCD 北大核心 2024年第6期2037-2052,共16页
遥感卫星图像在空间分辨率和时间分辨率之间权衡导致图像序列的时空矛盾.时空图像融合提供了一个生成高空间分辨率和高时间分辨率图像的解决方案,以满足各种地球观测应用.基于稀疏表示的时空融合算法通过联合训练字典和稀疏编码表示建... 遥感卫星图像在空间分辨率和时间分辨率之间权衡导致图像序列的时空矛盾.时空图像融合提供了一个生成高空间分辨率和高时间分辨率图像的解决方案,以满足各种地球观测应用.基于稀疏表示的时空融合算法通过联合训练字典和稀疏编码表示建立高低空间分辨率图像之间的关系,为物候变化、类型变化等各种情况提供了统一的融合框架.然而,多源遥感图像来自于不同的传感器,高低空间分辨率图像之间关系模型暗含有传感器映射关系,导致模型设备依赖.针对该问题,本文提出将多源遥感图像时空融合过程分解为传感器偏差校正和时空融合两个子问题,即设备依赖部分和设备无关部分.传感器偏差校正部分可以作为时空融合预处理模块,提高融合精度,并且使得后续的融合模型更加具有普适性.当高低空间分辨率图像空间分辨率差异较大时,“高低空间分辨率图像稀疏系数一致”的假设带来的融合误差非常突出.针对该问题,本文提出基于跨尺度相似先验的遥感图像时空融合算法,利用跨尺度相似块构建稀疏结构先验的正则项,优化稀疏表示的目标函数,并构建中间尺度图像,降低跨尺度相似块的二义性.本文分别使用3组典型场景的实验数据集与其他算法进行对比,实验结果表明,在BOREAS数据集上,与次优的指标相比,本文算法的结构相似度(Structural SIMilarity,SSIM)提高了4.2%,光谱角(Spectral Angle Mapper,SAM)提高了4.6%;在CIA数据集上,与次优的指标相比,本文算法的SSIM提高了2.7%,SAM提高了12.8%;在LGC数据集上,与次优的指标相比,本文算法的SSIM提高了7.1%,SAM提高了16.3%;证明本文算法在空间和光谱特性上表现出优秀的特性. 展开更多
关键词 遥感 时空融合 稀疏表示 跨尺度相似
在线阅读 下载PDF
基于注视转移学习的视频注视目标检测
9
作者 杨兴明 史俊彪 +2 位作者 李自强 吴克伟 谢昭 《计算机工程与应用》 CSCD 北大核心 2024年第20期293-301,共9页
视频注视目标检测,需要估计视频帧中的人所注视目标的位置。在不同的时间,人会注视不同的目标。在两个注视目标转移的时间段内,人并没有注视特定的目标。基于图像Transformer的注视目标检测方法,忽略了抑制注视转移现象。注视转移中的... 视频注视目标检测,需要估计视频帧中的人所注视目标的位置。在不同的时间,人会注视不同的目标。在两个注视目标转移的时间段内,人并没有注视特定的目标。基于图像Transformer的注视目标检测方法,忽略了抑制注视转移现象。注视转移中的注视方向,会干扰注视目标的真实位置估计。为了实现视频注视目标检测,提出一种基于注视转移的模型,该模型包括注视方向引导模块,注视转移时间融合模块。在注视方向引导模块中,注视目标位置被用于估计注视方向热图。该模块使用注视方向热图来引导注视目标热图生成,这有利于抑制非注视方向的目标响应,提高注视目标定位的准确性。在注视转移时间融合模块中,注视目标热图随着时间变化会产生时空热图。该模块对时空热图采用双向时空卷积长短期记忆网络(LSTM),产生时空记忆融合的注视目标热图,来描述时空热图中注视目标的变化过程。该模块将注视转移时间段描述为高斯时间模型。针对注视转移的时间长度不确定的问题,该模块设计高斯时间融合方法,来估计出注视转移的视时间长度和注视转移的开始和结束时间。注视转移时间段的准确定位,抑制了注视转移现象对注视目标位置估计的干扰。该模型训练使用了注视方向损失、注视目标存在损失、注视目标热图损失,以及注视转移时间定位损失。实验采用GazeFollow和VideoAttentionTarget数据集。实验结果表明基于注视转移的模型,优于基于图像Transformer的注视目标检测方法。 展开更多
关键词 注视目标检测 注视转移 注视目标热图 时空卷积长短期记忆网络 高斯时间融合
在线阅读 下载PDF
基于层次化Conformer的语音合成
10
作者 吴克伟 韩超 +2 位作者 孙永宣 彭梦昊 谢昭 《计算机科学》 CSCD 北大核心 2024年第2期161-171,共11页
语音合成需要将输入语句的文本转换为包含音素、单词和语句的语音信号。现有语音合成方法将语句看作一个整体,难以准确地合成出不同长度的语音信号。通过分析语音信号中蕴含的层次化关系,分别设计基于Conformer的层次化文本编码器和基于... 语音合成需要将输入语句的文本转换为包含音素、单词和语句的语音信号。现有语音合成方法将语句看作一个整体,难以准确地合成出不同长度的语音信号。通过分析语音信号中蕴含的层次化关系,分别设计基于Conformer的层次化文本编码器和基于Conformer的层次化语音编码器,并提出了一种基于层次化文本-语音Conformer的语音合成模型。首先,该模型根据输入文本信号的长度,构建层次化文本编码器,包括音素级、单词级、语句级文本编码器3个层次,不同层次的文本编码器描述不同长度的文本信息;并使用Conformer的注意力机制来学习该长度信号中不同时间特征之间的关系。利用层次化的文本编码器,能够找出语句中不同长度需要强调的信息,有效实现不同长度的文本特征提取,缓解合成的语音信号持续时间长度不确定的问题。其次,层次化语音编码器包括音素级、单词级、语句级语音编码器3个层次。每个层次的语音编码器将文本特征作为Conformer的查询向量,将语音特征作为Conformer的关键字向量和值向量,来提取文本特征和语音特征的匹配关系。利用层次化的语音编码器和文本语音匹配关系,可以缓解不同长度语音信号合成不准确的问题。所提模型的层次化文本-语音编码器可以灵活地嵌入现有的多种解码器中,通过文本和语音之间的互补,提供更为可靠的语音合成结果。在LJSpeech和LibriTTS两个数据集上进行实验验证,实验结果表明,所提方法的梅尔倒谱失真小于现有语音合成方法。 展开更多
关键词 语音合成 文本编码器 语音编码器 层次化模型 CONFORMER
在线阅读 下载PDF
HAO打卡系统:以组织智能成就智能组织
11
作者 吴信东 朱晓宇 +2 位作者 董丙冰 嵇圣硙 卜晨阳 《软件学报》 EI CSCD 北大核心 2024年第4期1914-1933,共20页
打卡可能出于私人目的,没有组织关联,比如记录个人的旅行日志;也可能是公事需求,属于组织考勤的一部分,有时还会与多个组织关联.因此,打卡数据的保存、分享和分析需要精细化管理.HAO打卡是一个移动式轻量级打卡平台,以个人和组织为两个... 打卡可能出于私人目的,没有组织关联,比如记录个人的旅行日志;也可能是公事需求,属于组织考勤的一部分,有时还会与多个组织关联.因此,打卡数据的保存、分享和分析需要精细化管理.HAO打卡是一个移动式轻量级打卡平台,以个人和组织为两个抓手,以人类智能(HI)、人工智能(AI)和组织智能(OI)相结合的HAO智能为技术驱动,构建HAO打卡知识图谱,通过提出HAO打卡闭环权限管理架构,并辅以从粗粒度到细粒度的隐私权限管理办法,在进行精细化考勤管理的同时保护用户的隐私,从而推动新一代打卡系统的智能化变革.在组织考勤分析方面,提出四要素得分法和四要素考勤报表法,通过打卡数据计算员工考勤得分,生成精准全面的考勤报表,为组织提供决策支持,激发组织和个人的活力,以组织智能成就智能组织. 展开更多
关键词 HAO打卡系统 智能考勤 组织智能 决策支持
在线阅读 下载PDF
手语识别、翻译与生成综述 被引量:12
12
作者 郭丹 唐申庚 +1 位作者 洪日昌 汪萌 《计算机科学》 CSCD 北大核心 2021年第3期60-70,共11页
手语研究是典型的多领域交叉研究课题,涉及计算机视觉、自然语言处理、跨媒体计算、人机交互等多个方向,主要包括离散手语识别、连续手语翻译和手语视频生成。手语识别与翻译旨在将手语视频转换成文本词汇或语句,而手语生成是根据口语... 手语研究是典型的多领域交叉研究课题,涉及计算机视觉、自然语言处理、跨媒体计算、人机交互等多个方向,主要包括离散手语识别、连续手语翻译和手语视频生成。手语识别与翻译旨在将手语视频转换成文本词汇或语句,而手语生成是根据口语或文本语句合成手语视频。换言之,手语识别翻译与手语生成可视为互逆过程。文中综述了手语研究的最新进展,介绍了研究的背景现状和面临的挑战;回顾了手语识别、翻译和生成任务的典型方法和前沿研究;并结合当前方法中存在的问题,对手语研究的未来发展方向进行了展望。 展开更多
关键词 视频理解 机器翻译 离散手语识别 连续手语翻译 手语视频生成
在线阅读 下载PDF
基于FR-ResNet的车辆型号精细识别研究 被引量:14
13
作者 余烨 傅云翔 +1 位作者 杨昌东 路强 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期1125-1136,共12页
车辆型号精细识别的关键是提取有区分性的细节特征.以\特征重用"为核心,以有效提取车辆图像细节特征并进行高效利用为目的,提出了一种基于残差网络特征重用的深度卷积神经网络模型FR-ResNet(Improved ResNet focusing on feature r... 车辆型号精细识别的关键是提取有区分性的细节特征.以\特征重用"为核心,以有效提取车辆图像细节特征并进行高效利用为目的,提出了一种基于残差网络特征重用的深度卷积神经网络模型FR-ResNet(Improved ResNet focusing on feature reuse).该网络以ResNet残差结构为基础,分别采用多尺度输入、低层特征在高层中重用和特征图权重学习策略来实现特征重用.多尺度输入可以防止网络过深导致性能退化以及陷入局部最优;对各层网络部分加以不同程度的特征重用,可以加强特征传递,高效利用特征并降低参数规模;在中低层网络部分采用特征图权重学习策略,可以有效抑制冗余特征的比重.在公开车辆数据集CompCars和StanfordCars上进行实验,并与其他的网络模型进行比较,实验结果表明FR-ResNet在车辆型号精细识别任务中对车辆姿态变化和复杂背景干扰等具有鲁棒性,获得了较高的识别准确率. 展开更多
关键词 车辆型号精细识别 卷积神经网络 残差结构 特征重用
在线阅读 下载PDF
基于BN优化SNGAN的自适应音频隐写 被引量:3
14
作者 岳峰 朱慧 +1 位作者 苏兆品 张国富 《计算机学报》 EI CAS CSCD 北大核心 2022年第2期427-440,共14页
音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写... 音频隐写术是将秘密信息(如文本、图像、音频、视频等)隐藏到载体音频中,不仅能够保证秘密信息本身的安全,而且能保证秘密信息传输的安全,已成为信息隐藏领域的研究热点之一.近年来,基于深度学习的音频隐写分析技术能够在充分挖掘隐写深度特征的基础上实现高效的隐写检测,导致隐写术的安全性降低,为隐写术带来了新的挑战.不过,生成对抗网络(Generative Adversarial Networks,GAN)的迅速发展,为音频隐写提供了一个新的解决思路.但是,现有基于GAN的音频隐写在隐藏容量、不可感知性、抗检测性上很难达到均衡,不能满足实际应用需求.为此,本文在网络结构单元上将批处理归一化与频谱归一化相结合,提出了一种基于优化频谱归一化GAN的自适应音频隐写方法(Batch Normalization optimized Spectral Normalization GAN,BNSNGAN).具体来说,首先设计了一种隐写编码器,基于时域补零法对秘密音频进行预处理,实现了任意长度秘密音频的嵌入,提高了音频隐写的不可感知性;其次设计了一种具有并行结构的隐写提取器,用不同的卷积核进行去卷积,提高了秘密信息提取的准确率;最后设计了一种以交叉熵为损失函数的隐写分析器,提高了音频隐写的抗检测性.对比实验结果表明,通过编码器、提取器和隐写分析器这三个网络的互相学习,本文所提BNSNGAN不仅可以实现任意长度秘密音频的嵌入,具有较高的秘密信息提取率,并且在隐写容量、不可感知性和抗检测性上可以达到一个较好的均衡. 展开更多
关键词 音频隐写 生成对抗网络 频谱归一化 批处理归一化 自适应隐写
在线阅读 下载PDF
嵌入局部聚类描述符的视频问答Transformer模型 被引量:3
15
作者 郭丹 姚沈涛 +1 位作者 王辉 汪萌 《计算机学报》 EI CAS CSCD 北大核心 2023年第4期671-689,共19页
视频问答(Video Question Answering)是典型的跨模态理解任务,其目的是根据提问的文本对视频内容进行理解并推理正确的答案,如何有效地对多模态输入进行特征表示并建立跨模态间复杂的语义关联是解决这一任务的关键难点.为了正确地推理结... 视频问答(Video Question Answering)是典型的跨模态理解任务,其目的是根据提问的文本对视频内容进行理解并推理正确的答案,如何有效地对多模态输入进行特征表示并建立跨模态间复杂的语义关联是解决这一任务的关键难点.为了正确地推理结果,模型首先必须捕获视频序列和复杂文本中包含的关键语义信息.本文提出了一种嵌入局部聚类描述符的视频问答Transformer模型,称为TVLAD-Net(Transformer Residual-less VLAD Network).TVLAD-Net主要包含一个端到端可训练的无残差局部聚合描述符模块(RVLAD,Residual-less Vec⁃tor of Local Aggregated Descriptor),以及一个统一的语义转换模块(Transformer).具体来说,RVLAD通过设置多个不同的聚类中心将视频和文本特征分别聚合为少量紧凑的局部聚类描述符;每个聚类描述符从全局角度分配及汇总了序列上权重不一的语义信息,相比于聚合前的视频帧特征或文本词特征具有更丰富的表征能力.Trans⁃former模块能够利用模态间的相互语义引导,实现多模态聚类描述符的语义交互,即采用多头注意力机制同时求解模态内和模态间的语义关联,进而避免了与所求解问题无关或者冗余的描述符语义单元的聚合.实验评估在TGIF-QA、MSVD-QA和MSRVTT-QA三个基准数据集上进行;实验结果表明本文方法能够实现先进的问答推理,在整体的评价指标上与现有方法相比有2%~5%的性能提升. 展开更多
关键词 视频问答 多模态数据 聚类描述符 自注意力变换网络 深度学习
在线阅读 下载PDF
基于多特征融合和BiLSTM的语音隐写检测算法 被引量:1
16
作者 苏兆品 张羚 +1 位作者 张国富 岳峰 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1300-1309,共10页
针对传统互联网低比特率编解码器(internet Low Bit Rate Codec,iLBC)语音隐写主要集中在线性频谱频率系数矢量量化、码本搜索矢量量化或增益量化的单个阶段,难以应对多阶段下的联合隐写检测等问题,提出一种基于多特征融合和双向长短时... 针对传统互联网低比特率编解码器(internet Low Bit Rate Codec,iLBC)语音隐写主要集中在线性频谱频率系数矢量量化、码本搜索矢量量化或增益量化的单个阶段,难以应对多阶段下的联合隐写检测等问题,提出一种基于多特征融合和双向长短时记忆(Bi-Directional Long Short-Term Memory,BiLSTM)网络的iLBC语音隐写检测算法.通过分析隐写对不同阶段参数带来的影响,提取线性频谱频率系数矢量量化、码本搜索矢量量化和增益量化过程中的多种隐写特征,并分别输入到相应的BiLSTM检测网络,最后将各检测网络的结果进行融合,得到最终隐写检测结果 .实验表明,所提算法可以实现多阶段下的联合隐写检测,而且在语音时长较短时,仍能取得优异的检测结果,平均检测准确率达到了90%以上. 展开更多
关键词 联合隐写检测 互联网低比特率编解码器 双向长短时记忆网络 隐写特征提取 多特征融合
在线阅读 下载PDF
体系结构动态变化的软件测试资源分配算法
17
作者 李磊 张国富 +1 位作者 苏兆品 岳峰 《计算机应用》 CSCD 北大核心 2023年第7期2261-2270,共10页
测试资源分配是软件测试中的一个核心问题。已有相关研究大都假设软件的体系结构是静态不变的,且几乎没有考虑成本约束。针对该问题,提出一种体系结构动态变化的软件测试资源分配算法。首先构建了一种体系结构动态变化的多阶段多目标多... 测试资源分配是软件测试中的一个核心问题。已有相关研究大都假设软件的体系结构是静态不变的,且几乎没有考虑成本约束。针对该问题,提出一种体系结构动态变化的软件测试资源分配算法。首先构建了一种体系结构动态变化的多阶段多目标多约束测试资源分配模型;然后基于参数重估计、广义差分进化,在算法中加入了种群重新初始化,该方法能减小算法搜索空间并提升算法性能;最后在算法中加入了一种新的修复处理机制,该机制能有效剔除算法产生的无效解。与归一化加权求和多目标差分进化(WNS-MODE)算法和基于第三代广义差分进化的动态测试资源分配(DTRA-GDE3)算法相比,所提算法获得的解集的容量值分别提高了约11.81倍和0.39倍。在覆盖值指标方面,所提算法完全覆盖了WNS-MODE算法,并且相对于DTRA-GDE3算法提高了81个百分点。在超体积值指标方面,所提算法分别提高了近6倍和9倍。实验结果表明,所提算法能够更好地适应软件体系结构的动态变化,可为软件产品的动态测试提供更多和更优的测试资源分配方案,并满足用户需求的动态变化。 展开更多
关键词 构件软件 测试资源分配 动态测试 多阶段 归一化
在线阅读 下载PDF
基于双判别器对抗模型的半监督跨语言词向量表示方法
18
作者 张玉红 植文武 +1 位作者 李培培 胡学钢 《计算机研究与发展》 EI CSCD 北大核心 2023年第9期2127-2136,共10页
跨语言词向量表示旨在利用语言资源丰富的词向量提高语言资源缺乏的词向量表示.已有方法学习2个词向量空间的映射关系进行单词对齐,其中生成对抗网络方法能在不使用对齐字典的条件下获得良好性能.然而,在远语言对上,由于缺乏种子字典的... 跨语言词向量表示旨在利用语言资源丰富的词向量提高语言资源缺乏的词向量表示.已有方法学习2个词向量空间的映射关系进行单词对齐,其中生成对抗网络方法能在不使用对齐字典的条件下获得良好性能.然而,在远语言对上,由于缺乏种子字典的引导,映射关系的学习仅依赖向量空间的全局距离,导致求解的词对存在多种可能,难以准确对齐.为此,提出了基于双判别器对抗的半监督跨语言词向量表示方法.在已有对抗模型基础上,增加一个双向映射共享的、细粒度判别器,形成具有双判别器的对抗模型.此外,引入负样本字典补充预对齐字典,利用细粒度判别器进行半监督对抗学习,消减生成多种词对的可能,提高对齐精度.在2个跨语言数据集上的实验效果表明,提出的方法能有效提升跨语言词向量表示性能. 展开更多
关键词 跨语言 词向量表示 对抗训练 双判别器 半监督
在线阅读 下载PDF
基于实例加权和双分类器的稳定学习算法 被引量:5
19
作者 杨帅 王浩 +1 位作者 俞奎 曹付元 《软件学报》 EI CSCD 北大核心 2023年第7期3206-3225,共20页
稳定学习的目标是利用单一的训练数据构造一个鲁棒的预测模型,使其可以对任意与训练数据具有相似分布的测试数据进行精准的分类.为了在未知分布的测试数据上实现精准预测,已有的稳定学习算法致力于去除特征与类标签之间的虚假相关关系.... 稳定学习的目标是利用单一的训练数据构造一个鲁棒的预测模型,使其可以对任意与训练数据具有相似分布的测试数据进行精准的分类.为了在未知分布的测试数据上实现精准预测,已有的稳定学习算法致力于去除特征与类标签之间的虚假相关关系.然而,这些算法只能削弱特征与类标签之间部分虚假相关关系并不能完全消除虚假相关关系;此外,这些算法在构建预测模型时可能导致过拟合问题.为此,提出一种基于实例加权和双分类器的稳定学习算法,所提算法通过联合优化实例权重和双分类器来学习一个鲁棒的预测模型.具体而言,所提算法从全局角度平衡混杂因子对实例进行加权来去除特征与类标签之间的虚假相关关系,从而更好地评估每个特征对分类的作用.为了完全消除数据中部分不相关特征与类标签之间的虚假相关关系以及弱化不相关特征对实例加权过程的干扰,所提算法在实例加权之前先进行特征选择筛除部分不相关特征.为了进一步提高模型的泛化能力,所提算法在训练预测模型时构建两个分类器,通过最小化两个分类器的参数差异来学习一个较优的分类界面.在合成数据集和真实数据集上的实验结果表明了所提方法的有效性. 展开更多
关键词 实例加权 特征选择 分布变化 稳定学习
在线阅读 下载PDF
基于软件体系结构和广义差分进化的测试资源动态分配算法 被引量:4
20
作者 邵志胜 张国富 +1 位作者 苏兆品 李磊 《计算机应用》 CSCD 北大核心 2021年第12期3692-3701,共10页
测试资源分配是软件测试中的一个基础问题,然而已有研究大都针对并串联模块软件模型而鲜有涉及体系结构软件模型。为此,首先针对可靠性和错误数动态变化的测试环境,构建了一种基于体系结构的多阶段多目标测试资源分配模型。然后基于参... 测试资源分配是软件测试中的一个基础问题,然而已有研究大都针对并串联模块软件模型而鲜有涉及体系结构软件模型。为此,首先针对可靠性和错误数动态变化的测试环境,构建了一种基于体系结构的多阶段多目标测试资源分配模型。然后基于参数重估计、种群重新初始化、广义差分进化和归一化加权求和设计了一种面向动态可靠性和错误数的多阶段多目标测试资源分配算法。最后,在仿真实验中,与已有的归一化加权求和多目标差分进化(WNS-MODE)算法进行对比,所提算法在不同结构的体系结构软件模型实例上所获解集更优,容量值提高了约16倍,覆盖值提高了约84个百分点,超体积提高了约6倍。实验结果表明,所提算法能够更好地适应可靠性和错误数的动态变化,可为体系结构软件模型的动态测试提供更多和更优的测试资源分配方案。 展开更多
关键词 软件测试 测试资源分配 软件体系结构 动态测试 广义差分进化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部