期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
微博谣言事件自动检测研究 被引量:12
1
作者 王志宏 过弋 《中文信息学报》 CSCD 北大核心 2019年第6期132-140,共9页
互联网大数据环境下,谣言事件的散播已成为以微博为代表的在线社交网络持续健康稳定发展的主要障碍之一,因此及时有效地进行谣言事件自动检测对营造清朗的网络环境和维护社会和谐发展有着现实意义。该文以微博事件为背景,综合谣言事件... 互联网大数据环境下,谣言事件的散播已成为以微博为代表的在线社交网络持续健康稳定发展的主要障碍之一,因此及时有效地进行谣言事件自动检测对营造清朗的网络环境和维护社会和谐发展有着现实意义。该文以微博事件为背景,综合谣言事件特征随时间变化特性以及时间维度上谣言事件的分布特点,引入论域划分思想,基于模糊聚类算法提出了随时间动态变化的事件时序特征构建模型;同时,基于社会学中谣言的传播原理,提出将事件流行度、模糊度和流传度作为微博谣言事件检测分类器的三项新特征。实验结果表明,该文提出的动态时序特征表示方法和三项新特征使谣言事件自动检测效果得到了可观提升。 展开更多
关键词 谣言事件检测 动态时序特征 SVM 在线社交网络
在线阅读 下载PDF
融合上下文信息的个性化序列推荐深度学习模型 被引量:7
2
作者 孙淑娟 过弋 钱梦薇 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1121-1128,共8页
针对现实购物场景中存在的用户偏好多样性且兴趣动态变化的问题,本文提出一种融合上下文信息的序列推荐模型(DeepSeq),通过嵌入用户提供的反馈信息深入挖掘用户的长短期潜在兴趣,有效解决了传统推荐系统无法模拟用户兴趣进化的问题.该... 针对现实购物场景中存在的用户偏好多样性且兴趣动态变化的问题,本文提出一种融合上下文信息的序列推荐模型(DeepSeq),通过嵌入用户提供的反馈信息深入挖掘用户的长短期潜在兴趣,有效解决了传统推荐系统无法模拟用户兴趣进化的问题.该文以真实的电商网站数据为背景,首先,利用历史行为数据和项目辅助信息融合构造长短期会话序列并融合上下文信息,提出兴趣衰减因子反应用户偏好变化.其次,基于文本卷积模型(TextCNN)训练得出序列向量表示,并通过多头注意力机制抽取用户项目序列潜在向量;最后,将用户交叉辅助信息和潜在行为特征组合向量输入到多层感知机,建立基于序列的推荐模型.实验结果表明,在行为序列中融合兴趣衰减因子和项目辅助信息,均有效提高了模型的准确率.此外,DeepSeq相对于传统的推荐模型在评价指标RMSE上至少降低了0.21%,并且在GAUC评价指标上提升值均超过了0.59%. 展开更多
关键词 特征序列 上下文信息 长短期会话 深度学习 注意力机制
在线阅读 下载PDF
基于深度距离分解的推荐算法研究 被引量:1
3
作者 钱梦薇 过弋 《中文信息学报》 CSCD 北大核心 2022年第5期41-48,共8页
针对推荐系统中的矩阵分解算法只根据用户和物品的特征向量进行点积运算,无法准确衡量不同用户对物品偏好的弊端,该文提出了一种基于深度距离分解模型的推荐算法。首先,改变传统矩阵分解直接对评分值进行分解的模式,将用户与物品的评分... 针对推荐系统中的矩阵分解算法只根据用户和物品的特征向量进行点积运算,无法准确衡量不同用户对物品偏好的弊端,该文提出了一种基于深度距离分解模型的推荐算法。首先,改变传统矩阵分解直接对评分值进行分解的模式,将用户与物品的评分矩阵转化为距离矩阵;然后,将距离矩阵分别按行和按列输入两个深度神经网络进行训练,得到用户和物品的距离特征向量;接下来,用距离特征向量计算用户和物品之间的距离值,通过设计的损失函数使预测距离值与真实距离值的误差达到最小;最后,将用户与物品的预测距离值转化为预测评分。实验结果表明,在不同数据集中,该文提出的基于深度距离分解模型的推荐算法在RMSE和MAE指标上均优于基线推荐算法。 展开更多
关键词 距离分解 深度神经网络 评分预测
在线阅读 下载PDF
融合图注意力的复杂时序知识图谱推理问答模型 被引量:2
4
作者 蒋汶娟 过弋 付娇娇 《计算机应用》 CSCD 北大核心 2024年第10期3047-3057,共11页
在时序知识图谱问答(TKGQA)任务中,针对模型难以捕获并利用问句中隐含的时间信息增强模型的复杂问题推理能力的问题,提出一种融合图注意力的时序知识图谱推理问答(GACTR)模型。所提模型采用四元组形式的时序知识库(KB)进行预训练,同时... 在时序知识图谱问答(TKGQA)任务中,针对模型难以捕获并利用问句中隐含的时间信息增强模型的复杂问题推理能力的问题,提出一种融合图注意力的时序知识图谱推理问答(GACTR)模型。所提模型采用四元组形式的时序知识库(KB)进行预训练,同时引入图注意力网络(GAT)以有效捕获问句中隐式时间信息;通过与RoBERTa(Robustly optimized Bidirectional Encoder Representations from Transformers pretraining approach)模型训练的关系表示进行集成,进一步增强问句的时序关系表示;将该表示与预训练的时序知识图谱(TKG)嵌入相结合,以获得最高评分的实体或时间戳作为答案预测结果。在最大的基准数据集CRONQUESTIONS上的实验结果显示,GACTR模型在时序推理模式下能更好地捕获隐含时间信息,有效提升模型的复杂推理能力。与基线模型CRONKGQA(Knowledge Graph Question Answering on CRONQUESTIONS)相比,GACTR模型在处理复杂问题类型和时间答案类型上的Hits@1结果分别提升了34.6、13.2个百分点;与TempoQR(Temporal Question Reasoning)模型相比,分别提升了8.3、2.8个百分点。 展开更多
关键词 时序知识图谱 复杂问答 图注意力网络 时序推理 时序关系表示
在线阅读 下载PDF
基于集合预测的方面级情感三元组提取 被引量:2
5
作者 余军 过弋 阮启铭 《中文信息学报》 CSCD 北大核心 2024年第8期147-157,共11页
近年来,基于方面级别的情感分析(ABSA)任务受到越来越多的关注。其中,方面级情感三元组提取(ASTE)是ABSA任务中最新的子任务,其要求同时提取出句子的方面词、观点词并输出对应的情感极性。先前的工作大多采用pipeline方式进行提取,忽略... 近年来,基于方面级别的情感分析(ABSA)任务受到越来越多的关注。其中,方面级情感三元组提取(ASTE)是ABSA任务中最新的子任务,其要求同时提取出句子的方面词、观点词并输出对应的情感极性。先前的工作大多采用pipeline方式进行提取,忽略了方面词和观点词之间的联系,且容易产生误差传播的问题。对此,该文提出一种基于集合预测的方法,将方面级情感三元组提取问题转换成集合预测问题,以端到端的方式进行三元组提取。在多个基准数据集上的实验表明,该文提出的模型取得了较为先进的结果。 展开更多
关键词 方面级情感分析 集合预测 情感三元组
在线阅读 下载PDF
TransformerG:基于层级图结构与文本注意力机制的法律文本多跳阅读理解 被引量:4
6
作者 朱斯琪 过弋 +3 位作者 王业相 余军 汤奇峰 邵志清 《中文信息学报》 CSCD 北大核心 2022年第11期148-155,168,共9页
该文针对Cail2020法律多跳机器阅读理解数据集进行研究,提出了TransformerG,一个基于不同层级的实体图结构与文本信息的注意力机制融合的多跳阅读理解模型。该模型有效地结合了段落中问题节点、问题的实体节点、句子节点、句中的实体节... 该文针对Cail2020法律多跳机器阅读理解数据集进行研究,提出了TransformerG,一个基于不同层级的实体图结构与文本信息的注意力机制融合的多跳阅读理解模型。该模型有效地结合了段落中问题节点、问题的实体节点、句子节点、句中的实体节点的特征与文本信息的特征,从而预测答案片段。此外,该文提出了一种句子级滑动窗口的方法,有效解决在预训练模型中文本过长导致的截断问题。利用TransformerG模型参加中国中文信息学会计算语言学专委会(CIPS-CL)和最高人民法院信息中心举办的“中国法研杯”司法人工智能挑战赛机器阅读理解赛道,取得了第2名的成绩。 展开更多
关键词 层级图结构 多跳机器阅读理解 法研杯
在线阅读 下载PDF
基于特征和结构信息增强的图神经网络集成学习框架 被引量:3
7
作者 张嘉杰 过弋 +1 位作者 王家辉 王雨 《计算机应用研究》 CSCD 北大核心 2022年第3期668-674,共7页
近年来,图神经网络由于其丰富的表征和推理能力受到广泛的关注,然而,目前的研究聚焦于卷积策略和网络结构的调整以获得更高的性能,不可避免地面临单一模型局限性的约束。受到集成学习思想的启发,面向图神经网络创新性地提出一套集成学... 近年来,图神经网络由于其丰富的表征和推理能力受到广泛的关注,然而,目前的研究聚焦于卷积策略和网络结构的调整以获得更高的性能,不可避免地面临单一模型局限性的约束。受到集成学习思想的启发,面向图神经网络创新性地提出一套集成学习框架(EL-GNN)。不同于常规的文本和图像数据,图数据除了特征信息外还包括了丰富的拓扑结构信息。因此,EL-GNN不仅将不同基分类器的预测结果进行融合,还在集成阶段额外补充了结构信息。此外,基于特征相似或结构邻居节点通常具有相似标签的先验假设,借助特征图重构,进一步优化集成策略,充分平衡了节点的特征和结构信息。大量实验表明,提出的集成策略取得了良好的成效,并EL-GNN在节点分类任务上显著优于现有模型。 展开更多
关键词 图神经网络 集成学习 特征相似图 节点分类
在线阅读 下载PDF
基于机器学习的外汇新闻情感分析 被引量:18
8
作者 戚天梅 过弋 +2 位作者 王吉祥 王志宏 成舟 《计算机工程与设计》 北大核心 2020年第6期1742-1748,共7页
为提高外汇新闻的意见挖掘,分析外汇新闻的数据特征,提出面向外汇新闻文本的细粒度情感分析方法,包括对情感倾向和情感强度的计算。在情感倾向方面,基于朴素贝叶斯、逻辑回归、随机森林和支持向量机4种机器学习算法,设计融合情感词权重... 为提高外汇新闻的意见挖掘,分析外汇新闻的数据特征,提出面向外汇新闻文本的细粒度情感分析方法,包括对情感倾向和情感强度的计算。在情感倾向方面,基于朴素贝叶斯、逻辑回归、随机森林和支持向量机4种机器学习算法,设计融合情感词权重的情感倾向计算方法;在情感强度方面,分析外汇新闻中影响情感强度的特征词,通过权重策略,实现最优权重组合下的外汇新闻情感强度计算。实验结果表明了该方法在情感倾向和情感强度计算方面的有效性。 展开更多
关键词 外汇 细粒度 情感分析 情感强度 机器学习
在线阅读 下载PDF
融合交互注意力和参数自适应的商品会话推荐 被引量:5
9
作者 郑楠 过弋 +1 位作者 李智强 王志宏 《中文信息学报》 CSCD 北大核心 2022年第11期131-139,共9页
在电商场景中,用户面对繁杂的商品时往往难以快速检索到所需商品,而基于会话的商品推荐能通过学习用户短期兴趣从而为其推荐可能感兴趣的商品,因此基于会话的推荐研究具有显著的理论和应用研究价值。已有的会话推荐算法大多关注于利用... 在电商场景中,用户面对繁杂的商品时往往难以快速检索到所需商品,而基于会话的商品推荐能通过学习用户短期兴趣从而为其推荐可能感兴趣的商品,因此基于会话的推荐研究具有显著的理论和应用研究价值。已有的会话推荐算法大多关注于利用全局图中的信息来增强会话图中的表征学习,而忽略了会话图和全局图上物品表征之间的交互关系。该文提出一种通过交互注意力和改进参数自适应策略增强的图神经网络商品会话推荐模型。交互注意层通过提取强相关信息来修正全局图和会话图中的商品表示,而参数自适应层则通过改进参数自适应策略动态权重调整以获得物品的最终表示进而用于预测。实验结果表明,该文所提出的模型在Tmall数据集上显著优于对比模型。 展开更多
关键词 会话推荐 图神经网络 交互注意力机制 改进参数自适应
在线阅读 下载PDF
基于深度交互融合网络的多跳机器阅读理解 被引量:3
10
作者 朱斯琪 过弋 王业相 《中文信息学报》 CSCD 北大核心 2022年第5期67-75,共9页
近年来,多跳机器阅读理解已经吸引了众多学者的关注,其要从多个文档中提取与问题相关的线索并回答问题。但很少有工作注重在段落选择时和回答问题时的多个段落之间的交互与融合,然而这对于多跳推理任务来说是至关重要的。因此,该文提出... 近年来,多跳机器阅读理解已经吸引了众多学者的关注,其要从多个文档中提取与问题相关的线索并回答问题。但很少有工作注重在段落选择时和回答问题时的多个段落之间的交互与融合,然而这对于多跳推理任务来说是至关重要的。因此,该文提出了一种针对多跳推理机器阅读理解的多段落深度交互融合的方法,首先从多个段落中筛选出与问题相关的段落,然后将得到的“黄金段落”输入到一个深度交互融合的网络中以聚集不同段落之间的信息,最终得到问题的答案。该文实验基于HotpotQA数据集,所提方法与基准模型相比,精确匹配(EM)提升18.5%,F_(1)值提升18.47%。 展开更多
关键词 多跳推理 机器阅读理解 多段落融合
在线阅读 下载PDF
多类型注意力下参数自适应的多标签文本分类 被引量:3
11
作者 李智强 过弋 王志宏 《中文信息学报》 CSCD 北大核心 2022年第10期116-125,共10页
多标签文本分类是指从一个极大的标签集合中为每个文档分配最相关的多个标签。该文提出一种多类型注意力机制下参数自适应模型(Parameter Adaptive Model under Multi-strategy Attention Mechanism,MSAPA)对文档进行建模和分类。MSAPA... 多标签文本分类是指从一个极大的标签集合中为每个文档分配最相关的多个标签。该文提出一种多类型注意力机制下参数自适应模型(Parameter Adaptive Model under Multi-strategy Attention Mechanism,MSAPA)对文档进行建模和分类。MSAPA模型主要包括两部分:第一部分采用多类型注意力机制分别提取融合自注意力机制的全局关键词特征和局部关键词特征及融合标签注意力机制的全局关键词特征和局部关键词特征;第二部分采用多参数自适应策略为多类型注意力机制动态分配不同的权重,从而学习到更优的文本表示,提升分类的准确率。在AAPD和RCV1两个基准数据集上的大量实验证明了MSAPA模型的优越性。 展开更多
关键词 多类型注意力机制 参数自适应 多标签文本分类
在线阅读 下载PDF
基于特征和图结构信息增强的多教师学习图神经网络 被引量:2
12
作者 张嘉杰 过弋 王家辉 《计算机应用研究》 CSCD 北大核心 2023年第7期2013-2018,共6页
近年来,图神经网络对图数据强大的表征能力和建模能力使其在诸多领域广泛应用并取得了重大突破。然而,现有模型往往倾向于对图卷积聚合策略和网络结构进行优化,缺乏了对图数据自身先验知识的探索。针对上述问题,通过知识蒸馏的方法,设... 近年来,图神经网络对图数据强大的表征能力和建模能力使其在诸多领域广泛应用并取得了重大突破。然而,现有模型往往倾向于对图卷积聚合策略和网络结构进行优化,缺乏了对图数据自身先验知识的探索。针对上述问题,通过知识蒸馏的方法,设计了一种基于特征信息和结构信息增强的多教师学习图神经网络,打破了现有模型对于数据先验知识提取的局限性。针对图数据背后所蕴涵的丰富特征与结构信息,分别设计了节点特征和边的数据增强方式。在此基础上,将原始数据和增强后的数据通过多教师学习模块进行知识嵌入,使得学生模型学习到更多关于数据的先验知识。在Cora、Citeseer和PubMed数据集上,节点分类准确率分别提升了1%、1.3%、1.1%。实验结果表明,提出的信息增强的多教师学习模型能够有效地捕获先验知识。 展开更多
关键词 图神经网络 知识蒸馏 数据增强 节点分类
在线阅读 下载PDF
面向外汇市场监测的分布式计算框架设计 被引量:1
13
作者 程文亮 王志宏 +2 位作者 周虞 过弋 赵俊锋 《计算机应用》 CSCD 北大核心 2020年第1期173-180,共8页
针对金融外汇市场监测指标计算复杂度高、完备性强、效率低等问题,基于Spark大数据架构提出了一种新的面向外汇市场监测的分布式计算框架。首先,对外汇市场监测的业务特性和现有技术框架进行了分析总结;然后,综合考虑了外汇单市场多指... 针对金融外汇市场监测指标计算复杂度高、完备性强、效率低等问题,基于Spark大数据架构提出了一种新的面向外汇市场监测的分布式计算框架。首先,对外汇市场监测的业务特性和现有技术框架进行了分析总结;然后,综合考虑了外汇单市场多指标和多市场多指标并行计算的业务特性;最后,基于Spark的有向无环图(DAG)作业调度机制和YARN的资源调度池隔离机制,分别提出了外汇市场级的有向无环图(M-DAG)模型和市场级资源分配策略--M-YARN。实验结果表明,所提面向外汇市场监测的分布式计算框架相对于传统技术框架在性能上提高了80%以上,可以有效保证大数据背景下外汇市场监测指标计算的完备性、精准性和时效性。 展开更多
关键词 外汇市场 市场监测 SPARK 有限无环图 资源分配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部