期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合个体偏差信息的文本情感分析模型
1
作者 陈丽安 过弋 《计算机应用》 CSCD 北大核心 2024年第1期145-151,共7页
目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)... 目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)。该模型使用自注意力机制、交叉注意力机制对评论文本与个体偏差信息分别进行双向融合,在融合过程中采用定制化权重的计算方式,以缓解实际应用场景中冷启动带来的数据稀疏问题,最终得到特征充分融合的评论文本和评论双边的表示信息。选取餐饮领域、电影领域的三个真实公开数据集Yelp2013、Yelp2014、IMDB进行效果验证,与UPNN(User Product Neural Network)、NSC(Neural Sentiment Classification)、CMA(Cascading Multiway Attention)、HUAPA(Hierarchical User And Product multi-head Attention)等基准模型进行比较。实验结果表明,相较于比较模型中最好的HUAPA模型,UP-ATL的准确度在三个数据集上依次分别提高了6.9、5.9和1.6个百分点。 展开更多
关键词 文本情感分析 自注意力机制 交叉注意力机制 Transformer模型 长短期记忆网络
在线阅读 下载PDF
情感增强的对话文本情绪识别模型 被引量:5
2
作者 王雨 袁玉波 +1 位作者 过弋 张嘉杰 《计算机应用》 CSCD 北大核心 2023年第3期706-712,共7页
针对现有的许多研究忽略了说话人的情绪和情感的相关性的问题,提出一种情感增强的图网络对话文本情绪识别模型——SBGN。首先,将主题和对话意图融入文本,并微调预训练语言模型RoBERTa以提取重构的文本特征;其次,给出情绪分析的对称学习... 针对现有的许多研究忽略了说话人的情绪和情感的相关性的问题,提出一种情感增强的图网络对话文本情绪识别模型——SBGN。首先,将主题和对话意图融入文本,并微调预训练语言模型RoBERTa以提取重构的文本特征;其次,给出情绪分析的对称学习结构,将重构特征分别输入图神经网络(GNN)情绪分析模型和双向长短时记忆(Bi-LSTM)情感分类模型;最后,融合情绪分析和情感分类模型,将情感分类的损失函数作为惩罚以构建新的损失函数,并通过学习调节得到最优的惩罚因子。在公开数据集DailyDialog上的实验结果表明,相较于DialogueGCN模型与目前最先进的DAG-ERC模型,SBGN模型的微平均F1分别提高16.62与14.81个百分点。可见,SBGN模型能有效提高对话系统情绪分析的性能。 展开更多
关键词 对话情绪识别 情感分类 主题诱导 图神经网络 双向长短时记忆
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部