期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于多模态数据融合的农作物病害识别方法 被引量:2
1
作者 陈维 施昌勇 马传香 《计算机应用》 北大核心 2025年第3期840-848,共9页
现有的基于深度学习模型的农作物病害识别方法依赖特定农作物病害图像数据集进行图像特征学习,而忽视了文本特征在辅助图像特征学习中的重要性。为了更有效地提高模型对农作物病害图像的特征提取能力及病害识别能力,提出一种基于对比语... 现有的基于深度学习模型的农作物病害识别方法依赖特定农作物病害图像数据集进行图像特征学习,而忽视了文本特征在辅助图像特征学习中的重要性。为了更有效地提高模型对农作物病害图像的特征提取能力及病害识别能力,提出一种基于对比语言-图像预训练和多模态数据融合的农作物病害识别方法(CDR-CLIP)。首先,构建高质量的病害识别图像-文本对数据集,利用文本信息增强农作物病害图像的特征表示;其次,利用多模态融合策略有效结合文本特征与图像特征,以加强模型对病害的判别能力;最后,针对性地设计预训练和微调策略,从而优化模型在特定农作物病害识别任务中的表现。实验结果表明,在PlantVillage和AI Challenger 2018农作物病害数据集上,CDR-CLIP的病害识别准确率分别达到99.31%和87.66%,F1值分别达到99.04%和87.56%;在PlantDoc农作物病害数据集上,CDR-CLIP的平均精度均值mAP@0.5达到51.10%,展现出CDR-CLIP强大的性能优势。 展开更多
关键词 数据融合 多模态 大语言模型 农作物病害识别 对比学习
在线阅读 下载PDF
基于增强句法信息与多特征图卷积融合的方面级情感分析
2
作者 田继帅 艾芳菊 《计算机科学与探索》 北大核心 2025年第3期738-748,共11页
方面级情感分析作为情感计算领域的重要任务,旨在识别文本中关于特定方面的情感倾向。为了提高在这一任务中的性能,提出了一种增强句法信息与多特征图卷积融合的网络模型(ESMFGCN),利用依赖树表示句子中单词之间的语法结构关系,由于单... 方面级情感分析作为情感计算领域的重要任务,旨在识别文本中关于特定方面的情感倾向。为了提高在这一任务中的性能,提出了一种增强句法信息与多特征图卷积融合的网络模型(ESMFGCN),利用依赖树表示句子中单词之间的语法结构关系,由于单纯地使用依赖树方法在建模时会引发不相关的噪声问题,引入了短语结构树,并将短语树转化为层级短语矩阵,并将由依赖树构造的邻接矩阵和层级短语矩阵合并作为图卷积网络的初始矩阵,用于增强句法信息。为了更精细地捕捉方面词与整个句子之间的关联,引入了注意力机制,对方面词上下文和整个句子建立更为精细的关联,并通过图卷积网络提取语义信息。设计融合层用于融合语义信息与句法信息,从而提高方面级情感分析的准确性和鲁棒性。在Restaurant、Laptop、Twitter数据集上分别设计对比实验、消融实验和敏感性分析实验,实验结果表明,相较于其他研究方法,该方法取得了显著的性能提升,证明了模型的有效性和优越性。 展开更多
关键词 方面级情感分析 句法特征 注意力机制 图卷积网络
在线阅读 下载PDF
基于全域信息融合和多维关系感知的命名实体识别模型 被引量:1
3
作者 胡婕 武帅星 +1 位作者 曹芝兰 张龑 《计算机应用》 北大核心 2025年第5期1511-1519,共9页
现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations fr... 现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations from Transformers)获取输入序列的向量表示,并结合BiLSTM进一步学习输入序列的上下文信息。其次,提出由梯度稳定层和特征融合模块组成的全域信息融合机制:前者使模型保持稳定的梯度传播并更新优化输入序列的表示,后者则融合BiLSTM的前后向表示获取更全面的特征表示。接着,构建多维关系感知结构学习不同子空间单词的关联性,以捕获文档中复杂的实体关系。此外,使用自适应焦点损失函数动态调整不同类别实体的权重,提高模型对少数类实体的识别性能。最后,在7个公开数据集上将所提模型和11个基线模型进行对比,实验结果表明所提模型的F1值均优于对比模型,可见该模型的综合性较优。 展开更多
关键词 命名实体识别 全域信息融合机制 梯度稳定层 多维关系感知 自适应焦点损失
在线阅读 下载PDF
基于多标签关系图和局部动态重构学习的多标签分类模型
4
作者 胡婕 郑启扬 +1 位作者 孙军 张龑 《计算机应用》 北大核心 2025年第4期1104-1112,共9页
在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签... 在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签的全局共现关系,采用数据驱动的方式构建多标签关系图,学习标签之间不同类型的依赖关系;其次,通过标签注意力机制探索文本信息和标签语义的关联性;最后,对标签图进行动态重构学习,以捕获标签之间的局部特定关系。在3个公开数据集BibTeX、Delicious和Reuters-21578上的实验结果表明,所提模型的宏平均F1(maF1)值相较于MrMP(Multi-relation Message Passing)分别提高了1.6、1.0和2.2个百分点,综合性能得到提升。 展开更多
关键词 多标签分类 多标签关系图 标签依赖关系 局部动态重构图 标签注意力机制
在线阅读 下载PDF
基于回指与逻辑推理的文档级关系抽取模型
5
作者 胡婕 吴翠 +1 位作者 孙军 张龑 《计算机应用》 北大核心 2025年第5期1496-1503,共8页
在文档级关系抽取(DocRE)任务中,现有模型主要侧重于学习文档中实体间的交互,忽略了对实体内部结构的学习,并很少关注到文档中的代词指代识别问题以及对逻辑规则的应用,这导致模型对文档中实体间关系的建模不够准确。因此,基于Transfor... 在文档级关系抽取(DocRE)任务中,现有模型主要侧重于学习文档中实体间的交互,忽略了对实体内部结构的学习,并很少关注到文档中的代词指代识别问题以及对逻辑规则的应用,这导致模型对文档中实体间关系的建模不够准确。因此,基于Transformer的架构融合关系回指图,建模实体间交互和实体内部结构,从而利用回指将更多上下文信息聚合到相应实体上以提高关系抽取的准确性。此外,采用数据驱动方式从关系注释中挖掘逻辑规则,增强对文本隐含逻辑关系的理解和推理能力。针对样本不平衡问题,引入加权长尾损失函数提高对稀有关系的识别准确性。在2个公开数据集DocRED(Document-level Relation Extraction Dataset)和Re-DocRED(Revisiting Documentlevel Relation Extraction Dataset)上的实验结果表明,所提模型性能表现最优,在DocRED测试集上,基于BERT编码器的模型的IgnF1和F1值比基线模型ATLOP(Adaptive Thresholding and Localized cOniext Pooling)分别提高了1.79和2.09个百分点,可见所提模型的综合性能较高。 展开更多
关键词 文档级关系抽取 关系回指图 逻辑规则 样本不平衡 加权长尾损失函数
在线阅读 下载PDF
基于协作贡献网络的开源项目开发者推荐
6
作者 游兰 张雨昂 +4 位作者 刘源 陈智军 王伟 曾星 何张玮 《计算机应用》 北大核心 2025年第4期1213-1222,共10页
面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN... 面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。 展开更多
关键词 开源生态 开发者推荐 异构信息网络 图神经网络 开源软件
在线阅读 下载PDF
基于地理时空关联和社会影响的兴趣点推荐 被引量:1
7
作者 金红 陈礼珂 +3 位作者 游兰 吕顺营 周开成 肖奎 《计算机科学》 北大核心 2025年第5期128-138,共11页
随着基于位置的社交网络的流行,个性化兴趣点推荐已经成为一项重要任务。然而现有研究在对上下文信息建模及融合时对其内在联系考虑不充分,其中地理与时间两种上下文之间往往是相互影响的;此外,在建模用户社会关系时主要通过度量不同用... 随着基于位置的社交网络的流行,个性化兴趣点推荐已经成为一项重要任务。然而现有研究在对上下文信息建模及融合时对其内在联系考虑不充分,其中地理与时间两种上下文之间往往是相互影响的;此外,在建模用户社会关系时主要通过度量不同用户签到的POI子集之间的直接相似性来表达用户社交行为的相似性程度,未能更好地缓解数据稀疏对不同用户签到POI子集相似性度量的影响。因此,合理地重构了上下文信息模型并有效地融合建模到用户偏好中,提出了一种基于地理时空关联和社会影响的兴趣点推荐方法。该方法根据不同时间状态下用户的主要地理活动中心呈现空间聚集现象,使用带有时间约束的方法评估POI间的地理相关性,以建模POI地理信息对用户签到的影响。进一步地,在对用户社会关系建模时假设具有更多共同签到的POI或签到POI的类别有着更大重合度的用户社交行为的相似性更高,结合POI类别信息来提高社会关系建模的有效性和作用。最后,将提出的地理时空关联模型和用户社会关系模型融合到加权矩阵分解中,进行用户的个性化POI推荐。对比实验结果表明,所提方法具有更好的POI推荐性能,说明了提出的模型在上下文建模和克服数据稀疏性方面更具优势。 展开更多
关键词 基于位置的社交网络 兴趣点推荐 数据稀疏 地理时空关联 社会影响
在线阅读 下载PDF
基于语义前缀微调的零样本对话状态跟踪领域迁移模型
8
作者 孙雨阳 张敏婕 胡婕 《计算机应用》 北大核心 2025年第7期2221-2228,共8页
零样本对话状态跟踪(DST)需要在缺乏标注数据时将已有模型迁移至新领域。现有的相关方法在执行领域迁移时常常难以捕捉对话文本中的上下文联系,导致相关模型在面对未知领域时的泛化能力不足。针对上述问题,提出一种基于语义前缀微调的... 零样本对话状态跟踪(DST)需要在缺乏标注数据时将已有模型迁移至新领域。现有的相关方法在执行领域迁移时常常难以捕捉对话文本中的上下文联系,导致相关模型在面对未知领域时的泛化能力不足。针对上述问题,提出一种基于语义前缀微调的零样本DST领域迁移模型。首先,利用槽位描述生成初始前缀,确保前缀与对话文本的紧密语义联系;其次,融合前缀位置与领域信息,生成能整合模型内部知识和领域信息的前缀;再次,根据对话内容的复杂性动态调整前缀长度,增强模型对上下文内容的敏感性;最后,通过全局式前缀插入增强模型对历史对话的全局记忆能力。实验结果表明,相较于Prompter模型,所提模型在MultiWOZ2.1数据集的Restaurant、Taxi和Train领域上的联合目标准确率(JGA)分别提高了5.50、0.90和7.50个百分点,在SGD数据集的Messaging、Payment和Trains领域上的JGA分别提高了0.65、14.51和0.65个百分点。可见,所提模型的零样本场景下DST任务的上下文理解能力和泛化迁移性能得到了有效提升。 展开更多
关键词 对话状态跟踪 零样本学习 领域迁移 前缀微调 参数高效迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部