期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于融合评价指标BERT-RGCN的油田评价区块调整措施推荐方法
1
作者 王梅 朱晓丽 +2 位作者 孙洪国 王海艳 濮御 《东北石油大学学报》 北大核心 2025年第5期110-120,I0008,共12页
为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价... 为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价区块及措施之间的交互信息构建异构图,利用BERT模型生成评价指标、评价区块及措施术语词向量,共同作为输入词向量,将融合评价指标信息的异构图和输入词向量放入RGCN模型训练,学习评价区块的有效表征;在某油田评价区块提供的数据集上进行实验对比。结果表明:EI-BERT-RGCN方法能够捕捉文本中隐含的复杂语义并缓解数据稀疏问题,能更好理解未观察到的评价指标与调整措施之间的潜在关系,提升节点的表示质量。EI-BERT-RGCN模型在精确率、召回率、F_(1)分数及ROC曲线下面积等评价指标上优于其他基准模型,在保持较高精确率的同时,展现更好的泛化能力和鲁棒性。该结果为油田评价区块调整措施推荐提供参考。 展开更多
关键词 异构图 变换器双向编码(BERT) 预训练模型 关系图卷积神经网络(RGCN) 推荐算法 措施推荐 油田评价区块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部