期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度 被引量:3
1
作者 王桂兰 张海晓 +1 位作者 刘宏 曾康为 《计算机应用研究》 CSCD 北大核心 2024年第5期1508-1514,共7页
为了实现园区综合能源系统(PIES)的低碳化经济运行和多能源互补,解决碳捕集装置耗电与捕碳需求之间的矛盾,以及不确定性源荷实时响应的问题,提出了基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度方法。该方法通过在PIES中添... 为了实现园区综合能源系统(PIES)的低碳化经济运行和多能源互补,解决碳捕集装置耗电与捕碳需求之间的矛盾,以及不确定性源荷实时响应的问题,提出了基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度方法。该方法通过在PIES中添加碳捕集装置,解决了碳捕集装置耗电和捕碳需求之间的矛盾,进而实现了PIES的低碳化运行;通过采用近端策略优化算法对PIES进行动态调度,解决了源荷的不确定性,平衡了各种能源的供给需求,进而降低了系统的运行成本。实验结果表明:该方法实现了不确定性源荷的实时响应,并相比于DDPG(deep deterministic policy gradient)和DQN(deep Q network)方法在低碳化经济运行方面具有有效性及先进性。 展开更多
关键词 园区综合能源系统 碳捕集 不确定性 低碳经济调度 近端策略优化算法
在线阅读 下载PDF
基于智能合约的微电网P2P能源交易策略研究 被引量:9
2
作者 李刚 关雪 +3 位作者 杨会峰 赵琳颖 辛锐 陈连栋 《智能系统学报》 CSCD 北大核心 2023年第4期813-822,共10页
随着能源系统向着绿色低碳化转型发展,大量新型产消者涌入交易市场,给能源交易带来了诸多不确定性,传统的集中式能源交易机制已不能满足新的需求。针对这一问题,本文分析了区块链技术与能源交易模式的契合性,在智能合约的基础上提出并... 随着能源系统向着绿色低碳化转型发展,大量新型产消者涌入交易市场,给能源交易带来了诸多不确定性,传统的集中式能源交易机制已不能满足新的需求。针对这一问题,本文分析了区块链技术与能源交易模式的契合性,在智能合约的基础上提出并构建了以产消者为研究对象的微电网点对点(peer-to-peer,P2P)能源交易模型,以提高可再生能源的消纳比例;为增加用户收益,使用3种不同出清机制进行结算,并设计了一种用户满意度反馈度量方法,可为后续交易提供参考;通过算例仿真,结果表明出清机制不同程度上影响着用户的满意度与收益,并且点对点能源交易策略优于传统的能源交易策略,该成果为数字化转型背景下创新能源交易模式提供了新的思路。 展开更多
关键词 微电网 能源交易 区块链 智能合约 点对点 产消者 清算机制 用户满意度
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
3
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
面向复杂场景的变电设备锈蚀检测方法
4
作者 赵振兵 席悦 +3 位作者 冯烁 赵文清 翟永杰 李冰 《智能系统学报》 北大核心 2025年第3期679-688,共10页
针对复杂场景下变电设备锈蚀检测中存在锈蚀形态差异大、尺度大小不一、特征显著性低等问题,提出了一种面向复杂场景的变电设备锈蚀检测方法。引入了频率通道注意力机制,通过更多的频率分量补充深层网络中的细节特征,优化模型对锈蚀特... 针对复杂场景下变电设备锈蚀检测中存在锈蚀形态差异大、尺度大小不一、特征显著性低等问题,提出了一种面向复杂场景的变电设备锈蚀检测方法。引入了频率通道注意力机制,通过更多的频率分量补充深层网络中的细节特征,优化模型对锈蚀特征的提取;在特征融合网络中使用多尺度特征增强模块重新构建C2f模块,使网络可以更好地捕获不同大小的锈蚀区域;引入附加检测头,缓解模型在特征融合过程中因卷积层下采样造成的锈蚀关键信息丢失的情况,从而提高变电设备锈蚀检测的精度。实验结果表明,改进以后的网络模型相较于原始的YOLOv8m模型,平均检测精度(mAP50)提升了5.1%,检测效果也优于其他主流目标检测模型,为变电设备锈蚀检测提供了新的参考方法。 展开更多
关键词 变电设备 不规则缺陷 锈蚀检测 YOLOv8 注意力机制 多尺度特征 检测头 复杂场景 电力视觉
在线阅读 下载PDF
渐进式分层特征提取的综合能源多任务负荷预测
5
作者 王德文 安涵 +1 位作者 张林飞 赵文清 《智能系统学报》 北大核心 2025年第4期858-870,共13页
针对综合能源系统中电、冷、热负荷存在复杂耦合关系,传统多任务学习模型难以学习到有效的多元负荷耦合特征可能导致预测精度降低的问题,本文充分考虑多元负荷复杂耦合关系,提出一种渐进式分层特征提取的综合能源多任务负荷预测模型。... 针对综合能源系统中电、冷、热负荷存在复杂耦合关系,传统多任务学习模型难以学习到有效的多元负荷耦合特征可能导致预测精度降低的问题,本文充分考虑多元负荷复杂耦合关系,提出一种渐进式分层特征提取的综合能源多任务负荷预测模型。将全年数据按季节划分,分析各季节下电、冷、热负荷间耦合强度;采用变分模态分解将历史负荷序列分解为多个不同频率的分量,可以更好挖掘多元负荷的深层时序特征;渐进式分层提取多元负荷的耦合特征,并动态分配耦合特征对预测结果的影响权重,避免耦合特征无效时模型预测精度下降。实验结果证明,在不同的多元负荷耦合强度下,渐进式分层特征提取的多任务负荷预测在精度上有更好表现。研究结论可用于指导综合能源多元负荷预测过程。 展开更多
关键词 负荷预测 综合能源 多任务学习 多元负荷 渐进式分层 特征提取 最大信息系数 变分模态分解
在线阅读 下载PDF
新型电力系统中的大模型驱动技术:现状、机遇与挑战 被引量:27
6
作者 李刚 方鸿 +3 位作者 刘云鹏 杨强 赵晓林 汪佐宪 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期2864-2878,共15页
建设新型电力系统是实现社会、经济高质量发展的重要基石,以新一代通用人工智能为主导的信息化技术与能源电力科学深度耦合,为新型电力系统的数字化转型工作提供了重要保障。为了探究电力系统在大模型时代潮流下的发展方向,该文首先系... 建设新型电力系统是实现社会、经济高质量发展的重要基石,以新一代通用人工智能为主导的信息化技术与能源电力科学深度耦合,为新型电力系统的数字化转型工作提供了重要保障。为了探究电力系统在大模型时代潮流下的发展方向,该文首先系统梳理了当前电力系统的数智化发展现状以及在新的场景需求下遇到的难点问题。然后重点探讨了以多模态大模型为代表的具备深度场景解析和语言描述能力的大模型技术在电力系统中的应用前景,并分析了其在几个典型场景下的相关应用成果,证明大模型技术可行性的同时,进一步总结了大模型技术在相关电力场景所面临的机遇与挑战性问题。最后对未来大模型技术如何与电力系统实现紧密融合做了展望与建议。该研究成果有望为新型电力系统数字化转型过程中的数智化发展提供参考,助力能源电力领域提质增效。 展开更多
关键词 新型电力系统 人工智能 多模态 大模型 平行智能 可解释性 电力安全
在线阅读 下载PDF
基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究 被引量:3
7
作者 李刚 蔡泽浩 +1 位作者 孙华勋 赵振兵 《图学学报》 CSCD 北大核心 2024年第5期979-986,共8页
针对输电线路螺栓金具缺陷检测任务中存在的缺陷样本类间分布不均、缺陷微小特征提取困难等问题,提出基于改进YOLOv8和语义知识融合的输电线路螺栓缺陷检测方法。首先,通过深入分析数据样本中螺栓金具缺陷种类与该螺栓承载金具种类之间... 针对输电线路螺栓金具缺陷检测任务中存在的缺陷样本类间分布不均、缺陷微小特征提取困难等问题,提出基于改进YOLOv8和语义知识融合的输电线路螺栓缺陷检测方法。首先,通过深入分析数据样本中螺栓金具缺陷种类与该螺栓承载金具种类之间的关系,完成语义关联构建工作;之后,在YOLOv8模型Neck部分引入BiFusion和RepBlock模块,增强模型的特征提取能力;其次,使用改进的融合语义知识校正权重的Loss函数,进一步提高训练模型的准确性,减少误检的发生;最后,分别完成基线选取实验、消融实验、超参数调整实验以及对比实验。实验结果表明,相较于Baseline模型,改进YOLOv8方法在平均精确率(mAP)上提升了4.0%,在关键少样本类精确率上提升了24.6%,可有效提高输电线路螺栓金具缺陷检测的效果,该语义关联构建及语义知识融合方法具有一定的泛用性,为输电线路无人机智能巡检领域提供了新的方法支持。 展开更多
关键词 无人机巡检 输电线路金具 螺栓缺陷检测 语义信息融合 YOLOv8
在线阅读 下载PDF
共享理念下的区域能源互联网生态系统价值共创模式与机制 被引量:11
8
作者 陈娟 鲁斌 +1 位作者 冯宇博 李筱笛 《中国电机工程学报》 EI CSCD 北大核心 2022年第22期8103-8116,共14页
随着互联网信息技术的快速发展和推广应用,社会资源配置模式发生了剧烈的变化。能源呈现出集约化、扁平化、网络化、去中心化的发展态势,传统经济背景下的价值共创机制在共享经济背景下进一步发生改变。基于“30·60”目标的紧迫性... 随着互联网信息技术的快速发展和推广应用,社会资源配置模式发生了剧烈的变化。能源呈现出集约化、扁平化、网络化、去中心化的发展态势,传统经济背景下的价值共创机制在共享经济背景下进一步发生改变。基于“30·60”目标的紧迫性,能源互联网成为推进“两个替代”(能源生产清洁替代和能源消费电能替代)和“双脱钩”(能源电力发展与碳脱钩和经济社会发展与碳排放脱钩)的有力保障和重要支撑。以共享理念为核心,对区域能源互联网生态系统进行系统化研究,分析开放式、数字赋能、共生耦合、多层联动的系统特征,提出区域能源互联网价值共创的4种不同模式,并对系统价值共创模式与价值共享机制展开了分析,以期为区域能源互联网的理论发展与实践应用提供有价值的参考。 展开更多
关键词 共享理念 能源共享 区域能源互联网 生态系统 价值共创
在线阅读 下载PDF
基于RFCARep-YOLOv8n的光伏电池缺陷检测算法 被引量:3
9
作者 张冀 王文彬 余洋 《计算机工程与应用》 北大核心 2025年第3期131-143,共13页
针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模... 针对光伏电池缺陷图像存在目标遮掩、复杂背景以及人眼难以分辨的小目标缺陷等问题,提出一种基于感受野坐标注意力和重参数的YOLOv8n光伏电池缺陷检测算法,简记为RFCARep-YOLOv8n。提出一种基于感受野坐标注意力的重参数模块代替瓶颈模块进行特征提取,扩大对全局信息的关注度提高语义表达能力,抑制遮掩物和复杂背景的干扰;在快速空间金字塔池化后添加可分离大核聚集模块,通过提高长距离特征依赖增强全局特征信息融合;在特征融合部分使用多尺度序列特征融合颈部网络,结合多尺度辅助检测头,减少细节特征丢失,提高小目标缺陷检测能力。实验结果表明,该模型在PASCAL VOC数据集中较基准模型mAP@0.5和mAP@0.5:0.95分别提升2.3和2.1个百分点,同时在光伏缺陷数据集中mAP@0.5达到87.6%,较基准模型提升3.5个百分点,参数量为3.23×10^(6),保持了基准模型的轻量参数同时提高检测性能。 展开更多
关键词 光伏缺陷 YOLOv8n 感受野注意力 特征融合 重参数
在线阅读 下载PDF
基于EE-YOLOv8s的多场景火灾迹象检测算法 被引量:2
10
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法 被引量:2
11
作者 赵振兵 韩钰 唐辰康 《图学学报》 北大核心 2025年第1期1-12,共12页
针对无人机航拍配电线路时因安全限制导致背景复杂动态、绝缘子缺陷形态不规则、缺陷特征不明显与缺陷信息难捕捉的问题,提出了一种基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法。在第一阶段,通过YOLOv8模型自动提取绝缘子部件图像... 针对无人机航拍配电线路时因安全限制导致背景复杂动态、绝缘子缺陷形态不规则、缺陷特征不明显与缺陷信息难捕捉的问题,提出了一种基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法。在第一阶段,通过YOLOv8模型自动提取绝缘子部件图像,为第二阶段绝缘子缺陷检测提供准确的输入,摒除冗余背景信息的影响。在第二阶段,利用ConvNeXt V2主干网络提升模型对不规则形态目标的识别能力,提升网络的特征提取能力;通过在特征融合过程中加入边缘知识融合模块,精准提取缺陷边缘信息;设计自适应形状IoU增强方法,采用自适应训练样本选择策略优化正负样本比例,并使用充分考虑边界框回归样本自身形状和尺度等固有属性的Shape-IoU损失函数,使模型聚焦目标本质特征,改善模型漏检误检情况,提高检测的准确性和鲁棒性。经实验证明,基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法比基线模型平均精确率提高了17.3%,有效提升配电线路绝缘子缺陷检测准确率,为电力系统的安全维护提供了有力的技术支持。 展开更多
关键词 配电线路 绝缘子缺陷检测 YOLOv8 ConvNeXt V2 边缘知识融合 自适应形状IoU增强
在线阅读 下载PDF
单目RGB穿衣人体的手部精细化重建
12
作者 张冀 任志鹏 +3 位作者 张荣华 苑朝 翟永杰 余正秦 《计算机应用研究》 北大核心 2025年第1期300-306,共7页
为解决单目穿衣人体在复杂姿态下手部形状重建存在遮挡和缺失的失真问题,提出了一种结合ECON与MANO手部模型,实现高效穿衣人体的手部精细化重建方法H-ECON(hand-focused explicit clothed humans obtained from normals)。具体而言,该... 为解决单目穿衣人体在复杂姿态下手部形状重建存在遮挡和缺失的失真问题,提出了一种结合ECON与MANO手部模型,实现高效穿衣人体的手部精细化重建方法H-ECON(hand-focused explicit clothed humans obtained from normals)。具体而言,该方法首先以类型无关的手部检测器聚焦手部区域并进行翻转和裁剪;然后,引入注意力机制用于增强对手部区域的感知能力,空洞螺旋卷积则更好地捕捉手部不同尺度的特征;最后,独特的融合模块确保了手部重建与整身模型的融合效果。在FreiHAND和HanCo公开数据集上与其他方法的定量定性对比结果表明了H-ECON的有效性,其独立手部模块明显优于ECON中的替代手部模块。H-ECON实现了对人体手部几何和姿态变化的精确描述,进一步缩小了2D图像生成到3D人体网格之间的差距。 展开更多
关键词 手部重建 穿衣人体 注意力机制 空洞螺旋卷积 深度几何学习
在线阅读 下载PDF
增强特征表示的绝缘子缺陷检测方法
13
作者 李丽芬 王明 +1 位作者 曹旺斌 梅华威 《计算机工程与设计》 北大核心 2025年第8期2373-2379,共7页
针对绝缘子缺陷目标区域较小、部分缺陷特征相似,从而导致检测精度较低的问题,提出了一种特征表示增强模型(FLDM-YOLO)。该模型基于FasterNet重构特征提取网络并且结合大核可分离注意力(LSKA)设计了SPPF-LSKA模块,增强了对目标的特征提... 针对绝缘子缺陷目标区域较小、部分缺陷特征相似,从而导致检测精度较低的问题,提出了一种特征表示增强模型(FLDM-YOLO)。该模型基于FasterNet重构特征提取网络并且结合大核可分离注意力(LSKA)设计了SPPF-LSKA模块,增强了对目标的特征提取能力;以重参数化技术为基础,提出了C2f-DBB模块,处理目标缺陷特征相似的问题;在边界框回归阶段使用MPDIoU作为损失函数,使得模型更加关注高质量锚框。实验结果表明,FLDM-YOLO模型在保证一定检测速度的前提下,mAP为91.3%,较YOLOv8模型提高了4.2%,可有效应用于实际的巡检工作。 展开更多
关键词 目标检测 绝缘子 部分卷积 主干特征提取网络 大核可分离注意力 重参数化 边界框损失函数
在线阅读 下载PDF
基于双重注意力时间卷积长短期记忆网络的短期负荷预测
14
作者 李丽芬 张近月 +1 位作者 曹旺斌 梅华威 《系统仿真学报》 北大核心 2025年第8期2004-2015,共12页
为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相... 为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。 展开更多
关键词 负荷预测 时间卷积网络 注意力 残差结构 相关性分析
在线阅读 下载PDF
高低频特征融合的低照度图像增强方法
15
作者 王德文 胡旺盛 +1 位作者 张润磊 赵文清 《智能系统学报》 北大核心 2025年第3期641-648,共8页
针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量... 针对现有低照度图像增强方法中性能与开销不平衡的问题,本文提出一种高低频特征融合的低照度图像增强方法。该方法在多尺度上提取几何特征丰富的低频特征与语义特征丰富的高频特征,经过高低频特征融合得到增强图像,在保证良好图像质量的同时降低开销。为提升低照度环境下的特征提取能力,构建残差混合注意力模块,从像素与通道两方面对重要的局部区域给予更多关注。针对下采样导致的信息丢失问题,提出一种特征合并模块对下采样后的特征进行特征补充。此外,通过多级残差密集连接模块增强特征复用能力。在SID(see-in-the-dark)数据集上的实验表明,该方法峰值信噪比和结构相似度分别达到29.67和0.792,模型参数量仅为1.5×10^(6)。 展开更多
关键词 低照度 图像增强 高频特征 低频特征 特征融合 注意力 多尺度 残差网络 密集连接
在线阅读 下载PDF
数字孪生中混合知识蒸馏辅助的异构联邦类增量学习
16
作者 张铭泉 贾圆圆 张荣华 《智能系统学报》 北大核心 2025年第4期905-915,共11页
在数字孪生背景下,联邦学习面临数据非独立同分布和类别动态变化的挑战,即空间和时间范围内的数据异构问题。为解决这一问题,本文构建了一个数字孪生背景下的联邦类增量学习整体框架,并提出了一种混合知识蒸馏辅助的联邦类增量学习方法... 在数字孪生背景下,联邦学习面临数据非独立同分布和类别动态变化的挑战,即空间和时间范围内的数据异构问题。为解决这一问题,本文构建了一个数字孪生背景下的联邦类增量学习整体框架,并提出了一种混合知识蒸馏辅助的联邦类增量学习方法。具体来说,与传统联邦学习本地更新方式不同,本文方法通过自适应语义蒸馏损失和自适应注意力蒸馏损失集成的混合知识蒸馏方法提取旧全局模型中输出层的软标签语义知识和中间层的高维特征知识,使客户端模型在拟合新数据的同时有效减少对旧数据的遗忘,提升联邦类增量模型的性能。在相同的数据异构情况下,与对比模型相比,本文方法在CIFAR100数据集上精度提升1.85%~2.56%,在医学CT图像数据集OrganAMNIST、OrganCMNIST、OrganSMNIST上也取得了最优或次优的性能。 展开更多
关键词 数字孪生 联邦类增量学习 混合知识蒸馏 数据异构 图像分类 灾难性遗忘 CT图像 联邦学习
在线阅读 下载PDF
结合FISCO BCOS与拓扑优化一致性算法的配电网多目标经济调度
17
作者 王桂兰 张成 周国亮 《计算机工程》 北大核心 2025年第7期348-361,共14页
随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化... 随着分布式能源的高比例渗透、大量储能单元以及柔性负荷的加入,主动配电网的优化调度变得更加具有挑战性。现有经济调度较少考虑柔性负荷和储能单元的接入,收敛速度较慢。结合国家“双碳”目标,提出FISCO BCOS平台下结合通信拓扑优化一致性算法的配电网多目标经济调度策略。该策略综合考虑发电机发电成本、污染气体排放、储能成本和柔性负荷用电效益,利用通信拓扑优化的一致性算法提高系统收敛速度,结合FISCO BCOS联盟链的存储和精简实用拜占庭容错(rPBFT)共识机制优化节点间的信息共享,降低领导节点的中心性,防止部分节点作恶,实现配电网多目标最优功率分配。仿真结果表明,提出的配电网多目标调度经济调度策略收敛速度快,在领导节点切换、不同阶段节点退出与加入及功率交换指令变化、收敛系数变动场景下仍能较快收敛,具有良好的鲁棒性和稳定性,且收敛速度优于快速一致性算法,若目标权重系数选取恰当,经济与环境结果均优于多目标NSGA-II算法。 展开更多
关键词 主动配电网 区块链 FISCO BCOS平台 多目标调度 通信拓扑优化 一致性算法
在线阅读 下载PDF
多分支时间序列预测与迁移学习相结合的齿轮箱状态监测
18
作者 赵文清 林炜超 《动力工程学报》 北大核心 2025年第8期1319-1329,共11页
为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结... 为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结合的齿轮箱状态监测方法。首先,利用极致梯度提升(extreme gradient boosting,XGBoost)算法筛选输入参数组成原始序列,对其进行分解得到季节与趋势序列。其次,提出季节、趋势序列特征提取模块获取季节及趋势特征的序列,将其与经过Informer模型处理后的特征序列进行融合后输入进多层感知机映射成最终的预测值,以构建提出的多分支时间序列预测网络(multi-branch time series prediction network,MBFN)。最后,利用迁移学习并结合一分类向量支持机(one-class support vector machine,OCSVM)模型及滑动窗口构建齿轮箱的健康指数,完成齿轮箱状态监测。实验结果表明,所提出模型的MBFN显著提高了油温预测精度,优于常规时间序列预测模型,所使用的迁移策略能以较少数据适应不同数据的分布,进而实现对齿轮箱的状态监测,并且所提出的模型可以提前18.9 d发出齿轮箱故障预警。 展开更多
关键词 风电机组 齿轮箱 状态监测 多分支网络 迁移学习
在线阅读 下载PDF
基于随机对称搜索的进化强化学习算法
19
作者 邸剑 万雪 姜丽梅 《计算机工程与科学》 北大核心 2025年第5期912-920,共9页
进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网... 进化算法的引入极大地提高了强化学习算法的性能。然而,现有的基于进化强化学习ERL的算法还存在易陷入欺骗性奖励、易收敛到局部最优和稳定性差的问题。为了解决这些问题,提出了一种随机对称搜索策略,直接作用于策略网络参数,在策略网络参数中心的基础上由最优策略网络参数指导全局策略网络参数优化更新,同时辅以梯度优化,引导智能体进行多元探索。在MuJoCo的5个机器人运动连续控制任务中的实验结果表明,提出的算法性能优于以前的进化强化学习算法,且具有更快的收敛速度。 展开更多
关键词 深度强化学习 进化算法 进化强化学习 随机对称搜索
在线阅读 下载PDF
基于局部和全局特征表示的小样本绝缘子缺陷检测
20
作者 崔克彬 胡真真 《计算机科学》 北大核心 2025年第6期286-296,共11页
为解决绝缘子缺陷样本数量少且缺陷目标小导致目前绝缘子缺陷检测精度偏低这一问题,提出一种结合CNN与Transformer的小样本目标检测模型(C-TFSIDD),通过融合图像局部和全局特征来更有效地实现绝缘子缺陷检测。首先,采用融合CNN局部细节... 为解决绝缘子缺陷样本数量少且缺陷目标小导致目前绝缘子缺陷检测精度偏低这一问题,提出一种结合CNN与Transformer的小样本目标检测模型(C-TFSIDD),通过融合图像局部和全局特征来更有效地实现绝缘子缺陷检测。首先,采用融合CNN局部细节捕捉能力与Transformer全局信息整合能力的Next-ViT作为特征提取模块,精准捕获绝缘子图像局部和全局特征信息;其次,采用改进路径聚合特征金字塔网络(Path Aggregation Feature Pyramid Network,PAFPN)进行双向多尺度特征融合,增强底层特征表示,以改善小目标的检测效果;最后,提出一个基于度量的判别性损失函数,在微调阶段优化分类器学习更具判别性的特征表示,以增加类别之间的可分性,减少类内变化的影响。在两个公开的绝缘子缺陷数据集上进行训练和评估,实验结果表明,与基线模型TFA相比,C-TFSIDD在样本为5shot,10shot,20shot的检测结果分别提升28.7%,35.5%,47.7%;与小样本目标检测模型FSCE相比,C-TFSIDD分别提升21.8%,26.7%,21.1%。结果表明,C-TFSIDD能有效提升小样本条件下的绝缘子缺陷检测精度。 展开更多
关键词 缺陷检测 绝缘子 小样本 CNN-Transformer 度量学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部