期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
数字孪生变电站框架设计与关键技术研究 被引量:14
1
作者 张冀 马也 +1 位作者 张荣华 朵春红 《工程科学与技术》 EI CAS CSCD 北大核心 2023年第6期15-30,共16页
数字孪生(DT)技术的发展给电力系统的智能化管理带来诸多便利,然而作为推动能源电力行业数字化、智能化的关键技术,相关研究与应用还处于初期起步阶段,亟需开展系统性研究,以突破适应能源电力行业特殊性的数字孪生关键技术。为此,本文... 数字孪生(DT)技术的发展给电力系统的智能化管理带来诸多便利,然而作为推动能源电力行业数字化、智能化的关键技术,相关研究与应用还处于初期起步阶段,亟需开展系统性研究,以突破适应能源电力行业特殊性的数字孪生关键技术。为此,本文以变电站作为应用场景,首先对变电站运维管理现状进行了分析,指出现阶段存在变电站巡检模式缺陷、模型精度不够、感知参量单一、缺乏对数据的深度挖掘等问题。以此设计了一套涵盖空间信息与设备建模、变电主设备机理建模、智能反馈控制、设备感知网络、基于数据驱动的数字孪生体模型的仿真,以及3维可视化渲染与应用的数字孪生变电站模型框架。然后讨论了变电站数字孪生技术面临的问题与挑战:专业智能研制方面,变电站数字孪生系统对传感器的感知精度、智慧功能集成度、抗干扰能力、功耗以及供能方式等提出更高要求;海量数据存储与计算方面,海量多源异构感知数据如何高效存储与利用,以及如何优化算力资源分配,满足系统实时计算需求;模型研究方面,现有数据驱动模型精度不足,模型不可解释且缺乏论证,影响整个系统的可靠运行;数据方面,如何解决“数据安全”与“数据孤岛”问题;3维虚拟实体构建与动态更新方面,如何低成本快速构建可用的高精度3维变电站模型,以及研究设计3维模型的动态更新算法,以保证孪生系统实时空一致性。进而探讨了解决问题的关键技术:通过感知理论研究与提升制作工艺、结合分布式云存储与云边协同计算、数据驱动与机理知识融合建模、可信联邦学习等先进技术,以及实景3维重建与点云动态可视化等相关技术,在满足隐私保护和数据安全前提下,建立“形”与“态”相融合的变电站数字孪生系统,实现变电站运行状态全感知、全生命周期数据智能管理与高效利用,变电站全业务场景智慧运行。结合数字孪生模型设计与关键技术问题的探讨,给出了一套面向工程应用的数字孪生变电站系统设计方案,重点阐述了包括变电站设备实时监测、设备故障诊断与故障预测、运维决策优化与智能反馈控制等典型的应用场景。 展开更多
关键词 变电站 数字孪生 框架设计 智能巡检 压缩感知 融合建模 可信联邦学习 3维可视化
在线阅读 下载PDF
新型电力系统分布式家庭光伏采集场景下的信任评估模型 被引量:4
2
作者 李莉 王小龙 +2 位作者 张之欣 时榕良 郭旭 《通信学报》 EI CSCD 北大核心 2023年第7期197-206,共10页
针对现有传感器网络信任评估模型不能直接用于新型电力系统分布式家庭光伏采集场景,难以满足高防御力、强计算力需求的问题,提出了一种基于多指标检测的分布式动态信任评估模型。首先,根据终端节点历史交互情况进行基于贝叶斯的通信信... 针对现有传感器网络信任评估模型不能直接用于新型电力系统分布式家庭光伏采集场景,难以满足高防御力、强计算力需求的问题,提出了一种基于多指标检测的分布式动态信任评估模型。首先,根据终端节点历史交互情况进行基于贝叶斯的通信信任评估;然后,对当前采集数据进行基于自身历史数据支持度的感知信任评估与基于概率密度的区域信任评估;最后,利用熵权法对通信信任、感知信任和区域信任的自适应权重进行计算,引入活跃系数与双重奖惩机制综合计算后实现信任值的动态更新。实验结果表明,该四层信任评估模型适用于新型电力系统环境,并可在20轮交互周期内有效检测出分布式家庭光伏采集场景中,对物理环境因素、设备质量因素、人为误操作和恶意入侵等情况下的异常节点,实现动态、精准的信任评估。 展开更多
关键词 传感器网络 信任评估 支持度 概率密度函数
在线阅读 下载PDF
基于SAW-PCL的输电线路缺销螺栓弱监督检测方法
3
作者 赵振兵 马迪雅 +3 位作者 丁洁涛 翟永杰 赵文清 张珂 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第11期3319-3326,共8页
螺栓作为输电线路中不可或缺的紧固件,其缺销必然会引起重大的安全隐患。针对螺栓目标较小、标注难度大的问题,提出了一种基于SAW-PCL的输电线路缺销螺栓弱监督检测方法。该方法通过图像级标注信息即可定位到螺栓目标。在主网络中引入... 螺栓作为输电线路中不可或缺的紧固件,其缺销必然会引起重大的安全隐患。针对螺栓目标较小、标注难度大的问题,提出了一种基于SAW-PCL的输电线路缺销螺栓弱监督检测方法。该方法通过图像级标注信息即可定位到螺栓目标。在主网络中引入卷积块注意模块(CBAM),抑制无用的背景特征,提取螺栓精细特征,提高螺栓的检测能力。针对弱监督检测中缺销螺栓的检测精度远低于正常螺栓及不平衡性问题,提出自适应加权损失函数(SAW),动态调节模型对不同类别样本的学习程度,均衡不同类别之间的检测精度,并定义了平均类间检测精度差(ADPD)来评价不平衡性。构建的自适应加权损失函数可以提升缺销螺栓的检测精度,对正常螺栓和缺销螺栓的检测精度有一定的均衡能力,定义的ADPD可以评价模型检测性能的平衡度。在自建数据集V1上的实验结果表明:改进方法的平均准确率均值(mAP)提高了19.7%,ADPD值降低了21.8,在mAP和ADPD双重指标评估下的模型表现出了更好的缺销螺栓检测能力。 展开更多
关键词 缺销螺栓检测 弱监督 平均类间检测精度差 自适应加权损失函数 深度学习
在线阅读 下载PDF
基于二次分解的不同太阳辐射下光伏功率预测
4
作者 王德文 焦天媛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期360-368,共9页
考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率... 考虑不同太阳辐射对光伏功率的影响,提出一种基于二次分解和改进粒子群算法的光伏功率预测模型。通过Spearman和Kendall对影响光伏功率的各气象因素进行相关性分析,发现总倾斜辐射、总水平辐射、漫射倾斜辐射、漫射水平辐射与光伏功率的相关系数较大。然后利用CLARANS将样本数据按太阳辐射强度分为强辐射、中辐射和弱辐射,针对3类数据采用自适应噪声完备集合经验模态分解(CEEMDAN)对关键气象因素和功率进行二次分解,充分挖掘时序信息并降低数据的不稳定性。提出一种改进粒子群算法(GWCPSO)用于优化卷积神经网络和双向长短期记忆网络的超参数,提高调参效率,最后构建预测模型进行光伏功率预测。分析3种太阳辐射类型下不同分解方法与网络模型的预测误差,结果表明,所的预测模型可有效提高不同太阳辐射下光伏功率的预测精度。 展开更多
关键词 光伏功率预测 二次分解 粒子群算法 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于改进YOLOv7的航拍小目标检测算法 被引量:4
5
作者 牛为华 魏雅丽 《电光与控制》 CSCD 北大核心 2024年第1期117-122,共6页
针对无人机航拍图像中小目标样本多、可提取特征信息少等问题,提出一种基于改进YOLOv7的无人机航拍小目标检测算法。首先,将骨干网络中低层小目标检测层融入聚合网络结构中,增加一个检测极小目标的头部;其次,将通道-空间注意力模块加入... 针对无人机航拍图像中小目标样本多、可提取特征信息少等问题,提出一种基于改进YOLOv7的无人机航拍小目标检测算法。首先,将骨干网络中低层小目标检测层融入聚合网络结构中,增加一个检测极小目标的头部;其次,将通道-空间注意力模块加入主干网络的特征提取过程中,同时引入特征融合中改进原有连接处的特征融合方式,自适应生成各层级特征图输出权重来动态优化特征图的表达能力;最后,在预测过程中引入SIoU Loss定位损失函数,提升模型检测能力及定位精度。实验结果表明,改进后的模型mAP50达到了52.6%,较基线算法YOLOv7提高了2.8个百分点,与主流的检测算法相比也取得了更高的检测精度,对于小目标检测任务具有较好的性能。 展开更多
关键词 航拍图像 无人机 小目标检测 YOLOv7 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于改进YOLOx-S的输电线路上金具检测方法 被引量:4
6
作者 赵振兵 吕雪纯 +3 位作者 王帆帆 蒋志钢 张凌浩 杨迎春 《无线电工程》 北大核心 2023年第11期2664-2672,共9页
输电线路航拍图像存在背景复杂多变、检测目标占比较小的问题。针对部分图像属于阴影、模糊等视觉信息较差的困难样本,在特征融合角度的基础上,使用通道注意力使得模型更加关注复杂背景下的关键特征提取区域;基于自适应空间特征融合(Ada... 输电线路航拍图像存在背景复杂多变、检测目标占比较小的问题。针对部分图像属于阴影、模糊等视觉信息较差的困难样本,在特征融合角度的基础上,使用通道注意力使得模型更加关注复杂背景下的关键特征提取区域;基于自适应空间特征融合(Adaptively Spatial Feature Fusion,ASFF)机制使得浅层和深层的特征图更合理地融合;对检测模型的损失函数进行改进,解决损失函数无法准确反映真实框与预测框重合度大小的问题。在自建的金具目标检测数据集上进行实验,实验结果表明,所提出的改进算法在原始YOLOx-S(You Only Look Once x-S)基础上获得了5.15%的检测精度提升,召回率提高了1.62%,并且针对小目标、易漏检和错检目标的检测有了明显改善,体现了在输电线路上金具目标检测的优越性和实用性。 展开更多
关键词 输电线路巡检 金具检测 深度学习 特征融合 损失函数 注意力机制
在线阅读 下载PDF
基于原始点云网格自注意力机制的三维目标检测方法 被引量:3
7
作者 鲁斌 孙洋 杨振宇 《通信学报》 EI CSCD 北大核心 2023年第10期72-84,共13页
为了增强感兴趣区域(RoI)的特征表达,包括空间网格特征编码模块和软回归损失,提出了一种基于原始点云网格自注意力机制的三维目标检测方法GT3D。网格特征编码模块用于通过自注意力机制对点的局部特征和空间特征进行有效加权,充分考虑点... 为了增强感兴趣区域(RoI)的特征表达,包括空间网格特征编码模块和软回归损失,提出了一种基于原始点云网格自注意力机制的三维目标检测方法GT3D。网格特征编码模块用于通过自注意力机制对点的局部特征和空间特征进行有效加权,充分考虑点云之间的几何关系,以提供更准确的特征表达;软回归损失用于改善数据标注过程中由于标注不准确而产生的回归歧义问题。将所提方法在公开的三维目标检测数据集KITTI上进行实验。结果表明,所提方法相比其他已公开的基于点云的三维目标检测方法检测准确率提升明显,并提交了KITTI官方测试集进行公开测试,对简单、中等和困难3个难度等级的汽车检测准确率分别达到91.45%、82.76%和79.74%。 展开更多
关键词 三维目标检测 点云 自注意力机制 空间坐标编码 软回归损失
在线阅读 下载PDF
基于对抗性持续学习模型的输电线路部件缺陷分类 被引量:1
8
作者 赵振兵 蒋志钢 +2 位作者 熊静 聂礼强 吕雪纯 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3757-3766,共10页
输电线路金具巡检是电网安全态势感知中不可或缺的一部分,线路的定期巡检关系着电力系统是否能安稳运行。针对目前的输电线路部件缺陷分类模型无法处理现实情况中无限数据流的问题,该文提出一种基于对抗性持续学习的输电线路部件及其缺... 输电线路金具巡检是电网安全态势感知中不可或缺的一部分,线路的定期巡检关系着电力系统是否能安稳运行。针对目前的输电线路部件缺陷分类模型无法处理现实情况中无限数据流的问题,该文提出一种基于对抗性持续学习的输电线路部件及其缺陷分类方法。将持续学习技术引入到输电线路部件缺陷分类任务中,使得分类模型在保证分类准确率的同时,可以从无限增长的数据流中不断学习新的分类任务,并且减少时间资源消耗。通过融入注意力机制,增强了模型对细微特征提取能力,解决了分类任务类间差异过小的问题,提高分类准确率。针对持续学习任务中的排序不可知性问题,提出基于离散度进行排序的方法,以实现持续学习分类模型的最优利用。最后,在CIFAR-100公共数据集和自建数据集上进行实验验证,并对模型的各种性能进行分析与比较。结果表明该文提出的方法实现了部件及其缺陷分类任务的可持续学习,缓解了灾难性遗忘的问题;融入注意力机制和使用L_(3)损失函数使分类准确率分别提高了1.43%和2.25%;实现了持续学习分类模型在已获取数据集上的最优利用,为电网安全态势感知打下了坚实的基础。 展开更多
关键词 输电线路态势感知 缺陷分类 持续学习 注意力机制 排序不可知性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部