期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高光谱图像结合机器学习方法无损检测猕猴桃 被引量:27
1
作者 霍迎秋 张晨 +3 位作者 李宇豪 智文涛 张炯 刘景玲 《中国农机化学报》 北大核心 2019年第4期71-77,共7页
为实现对过量使用1-MCP化学保鲜剂猕猴桃快速、无损检测,提出高光谱技术结合机器学习建立识别模型的检测方法。首先对空白猕猴桃和过量化学保鲜猕猴桃在865.11~1 711.71 nm范围内进行高光谱数据采集。然后选用标准正态变量变换方法预... 为实现对过量使用1-MCP化学保鲜剂猕猴桃快速、无损检测,提出高光谱技术结合机器学习建立识别模型的检测方法。首先对空白猕猴桃和过量化学保鲜猕猴桃在865.11~1 711.71 nm范围内进行高光谱数据采集。然后选用标准正态变量变换方法预处理原始光谱数据以去除噪声,采用波段比算法增强图像,数学形态学算法提取感兴趣区域,进而计算光谱平均值。最后采用主成份分析(PCA)、竞争性自适应加权(CARS)方法对全光谱数据(FS)进行特征提取,去除干扰项;以PCA和CARS提取的特征量和FS数据作为输入,结合偏最小二乘(PLS)和支持向量机(SVM)建立12个识别模型。试验结果表明,基于PLS和SVM建立的识别模型均能够有效检测过量化学保鲜猕猴桃,其中CARS-SVM模型性能最好,平均正确识别率达100%,运行速度最快,仅为0.015 348 s,满足工程实践中实时性高的要求,为快速、无损检测猕猴桃果品安全提供理论支撑。 展开更多
关键词 机器学习 竞争性自适应重加权 主成分分析 偏最小二乘 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部