单晶硅作为常用的红外光学材料,随着红外技术的不断发展,对光学元件的质量要求也越来越高。为了获得高面形精度、高表面质量的复杂曲面单晶硅光学元件,提出了激光原位辅助超精密车削、磁流变和小磨头抛光组合抛光修形的短流程加工工艺...单晶硅作为常用的红外光学材料,随着红外技术的不断发展,对光学元件的质量要求也越来越高。为了获得高面形精度、高表面质量的复杂曲面单晶硅光学元件,提出了激光原位辅助超精密车削、磁流变和小磨头抛光组合抛光修形的短流程加工工艺。采用激光原位辅助超精密车削加工后的单晶硅元件具有低亚表面损伤,与未加激光时相比,激光原位辅助超精密车削后的单晶硅亚表面损伤由920 n m降低至318 nm。并经过多轮磁流变和小磨头抛光组合工艺迭代加工后,单晶硅光学元件面形精度和表面质量得到有效提升,最终面形精度RMS值优于1/50λ,表面粗糙度Ra值优于0.5 nm。该方法抑制了加工过程中的亚表面损伤,减少了后续抛光过程中损伤去除时间,有效提高了单晶硅光学元件加工效率,且面形精度和表面质量可满足高精度光学元件应用要求。展开更多
面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合...面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合金自由曲面反射镜纳米精度加工和高频抑制工艺探索,并实现了基于计算全息元件的自由曲面形位高精度检测;最后,进行了光学系统的装调集成与成像实验。结果表明,系统的视场角为30°×5°,全视场光学传递函数值大于0.7,接近衍射极限,最大像元均方根半径为2.075μm,自由曲面光学元件的面形精度均方根(Root Mean Square,RMS)值优于20 nm,位置精度优于1μm,装配集成后能够满足大视场高分辨的场景使用要求,同时具备稳定可靠和快响制造等特点。展开更多
文摘单晶硅作为常用的红外光学材料,随着红外技术的不断发展,对光学元件的质量要求也越来越高。为了获得高面形精度、高表面质量的复杂曲面单晶硅光学元件,提出了激光原位辅助超精密车削、磁流变和小磨头抛光组合抛光修形的短流程加工工艺。采用激光原位辅助超精密车削加工后的单晶硅元件具有低亚表面损伤,与未加激光时相比,激光原位辅助超精密车削后的单晶硅亚表面损伤由920 n m降低至318 nm。并经过多轮磁流变和小磨头抛光组合工艺迭代加工后,单晶硅光学元件面形精度和表面质量得到有效提升,最终面形精度RMS值优于1/50λ,表面粗糙度Ra值优于0.5 nm。该方法抑制了加工过程中的亚表面损伤,减少了后续抛光过程中损伤去除时间,有效提高了单晶硅光学元件加工效率,且面形精度和表面质量可满足高精度光学元件应用要求。
文摘面向机载探测系统大视场光学成像的需求,开展了大视场光学成像系统光学设计、自由曲面光学元件超精密加工、形位误差同步检测以及系统集成与成像实验研究。首先,采用视场扩展法进行大视场自由曲面离轴反射光学系统的设计;其次,进行铝合金自由曲面反射镜纳米精度加工和高频抑制工艺探索,并实现了基于计算全息元件的自由曲面形位高精度检测;最后,进行了光学系统的装调集成与成像实验。结果表明,系统的视场角为30°×5°,全视场光学传递函数值大于0.7,接近衍射极限,最大像元均方根半径为2.075μm,自由曲面光学元件的面形精度均方根(Root Mean Square,RMS)值优于20 nm,位置精度优于1μm,装配集成后能够满足大视场高分辨的场景使用要求,同时具备稳定可靠和快响制造等特点。