期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GM(1,1)-IPSO-BP的重载铁路小半径曲线钢轨磨耗预测方法 被引量:1
1
作者 张斌 高玉祥 +2 位作者 陈再刚 王开云 时瑾 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第11期115-122,131,共9页
为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到... 为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到实测磨耗序列的初步预测结果;然后,利用IPSO算法对BP神经网络的权值和阈值进行自动寻优,对GM(1,1)模型初步预测序列的残差进行校正;最后,将优化后的两种模型组合构建基于GM(1,1)-IPSO-BP的重载铁路小半径曲线地段钢轨磨耗量预测模型。以某重载铁路桥上半径400 m曲线为例,利用长期的磨耗监测数据进行方法的适用性分析,研究结果表明:GM(1,1)-IPSO-BP模型克服了磨耗数据的非线性、随机性特征对计算结果的影响,预测精度优于单独使用GM(1,1)、IPSO-BP模型;背景值优化后的GM(1,1)模型预测准确性更可靠;IPSO优化算法提高了BP神经网络计算的精度和速度;预测结果和实测数据之间的相对误差不大于4%;在预测区间上的绝对误差小于0.4 mm,运用该方法能够较准确地得到钢轨磨耗的发展规律。研究结果可为重载铁路小半径曲线钢轨的精准维修和科学使用提供参考。 展开更多
关键词 钢轨磨耗 GM(1 1)模型 小半径曲线 BP神经网络 重载铁路 粒子群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部