露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模...露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。展开更多
为了实现以完工时间最短为目标的工艺规划与车间调度集成优化,提出了基于新编码遗传算法(Genetic Algorithm,GA)的集成优化方法。对工艺规划与车间调度集成优化(Integrated Process Planning and Scheduling optimization,IPPS)问题进...为了实现以完工时间最短为目标的工艺规划与车间调度集成优化,提出了基于新编码遗传算法(Genetic Algorithm,GA)的集成优化方法。对工艺规划与车间调度集成优化(Integrated Process Planning and Scheduling optimization,IPPS)问题进行了描述,并建立了完工时间最短的集成优化模型;设计一种具有最大柔性空间的染色体编码方法,从编码角度保证了集成优化问题的最大柔性度;根据IPPS问题特定约束改进了交叉变异方法,保证遗传操作前后均为可行解,使算法迭代均为有效迭代;进而制定了基于新编码遗传算法的IPPS问题求解流程。经Kim算例验证可知,与现有先进算法两阶段混合算法(Two-stage Hybrid Algorithm,THA)、改进蚁群算法(Enhanced Ant Colony Algorithm,EACA)和混合遗传算法(Hybrid Genetic Algorithm,HGA)相比,新编码GA在小规模、大规模生产情况下集成优化方案的完工时间均最小(分别为343、344、372、320、427及432 min),实验结果验证了新编码GA在IPPS问题求解中的可行性和先进性。展开更多
文摘露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。
文摘为了实现以完工时间最短为目标的工艺规划与车间调度集成优化,提出了基于新编码遗传算法(Genetic Algorithm,GA)的集成优化方法。对工艺规划与车间调度集成优化(Integrated Process Planning and Scheduling optimization,IPPS)问题进行了描述,并建立了完工时间最短的集成优化模型;设计一种具有最大柔性空间的染色体编码方法,从编码角度保证了集成优化问题的最大柔性度;根据IPPS问题特定约束改进了交叉变异方法,保证遗传操作前后均为可行解,使算法迭代均为有效迭代;进而制定了基于新编码遗传算法的IPPS问题求解流程。经Kim算例验证可知,与现有先进算法两阶段混合算法(Two-stage Hybrid Algorithm,THA)、改进蚁群算法(Enhanced Ant Colony Algorithm,EACA)和混合遗传算法(Hybrid Genetic Algorithm,HGA)相比,新编码GA在小规模、大规模生产情况下集成优化方案的完工时间均最小(分别为343、344、372、320、427及432 min),实验结果验证了新编码GA在IPPS问题求解中的可行性和先进性。