期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
运用PCA改进BP神经网络的用电异常行为检测
被引量:
13
1
作者
田野
张程
+1 位作者
毛昕儒
刘骥
《重庆理工大学学报(自然科学)》
CAS
2017年第8期125-133,共9页
针对目前用户用电行为和异常检测的传统方式所遇到的资源耗费、效率低下、检测困难等问题,结合数据挖掘技术设计实现了适用于大规模用电数据挖掘的算法,并建立了有效的异常特征提取模型。通过使用基于统计的特征提取方式确定异常指标,...
针对目前用户用电行为和异常检测的传统方式所遇到的资源耗费、效率低下、检测困难等问题,结合数据挖掘技术设计实现了适用于大规模用电数据挖掘的算法,并建立了有效的异常特征提取模型。通过使用基于统计的特征提取方式确定异常指标,并使用主成分分析方法对特征数据降维,进行异常用电信息的分析、辨识和处理,之后对处理后的用电数据建立BP神经网络完成用电异常行为检测。检测结果表明:该方法可以有效地提取出用电行为特征,并且能有效用于用电异常检测。
展开更多
关键词
用电行为
异常检测
特征提取
主成分分析
神经网络
在线阅读
下载PDF
职称材料
题名
运用PCA改进BP神经网络的用电异常行为检测
被引量:
13
1
作者
田野
张程
毛昕儒
刘骥
机构
重庆
大学计算机学院
国网重庆永川电力公司
出处
《重庆理工大学学报(自然科学)》
CAS
2017年第8期125-133,共9页
基金
国家自然科学基金资助项目(61502060)
文摘
针对目前用户用电行为和异常检测的传统方式所遇到的资源耗费、效率低下、检测困难等问题,结合数据挖掘技术设计实现了适用于大规模用电数据挖掘的算法,并建立了有效的异常特征提取模型。通过使用基于统计的特征提取方式确定异常指标,并使用主成分分析方法对特征数据降维,进行异常用电信息的分析、辨识和处理,之后对处理后的用电数据建立BP神经网络完成用电异常行为检测。检测结果表明:该方法可以有效地提取出用电行为特征,并且能有效用于用电异常检测。
关键词
用电行为
异常检测
特征提取
主成分分析
神经网络
Keywords
power consumption behavior
anomaly detection
feature extraction
principal component analysis
neural network
分类号
TP302.7 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
运用PCA改进BP神经网络的用电异常行为检测
田野
张程
毛昕儒
刘骥
《重庆理工大学学报(自然科学)》
CAS
2017
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部