基于数据驱动的方法已广泛应用于电力负荷预测领域,以提升预测精度。然而,当售电公司接入新用户时,由于缺乏用户历史用电数据,常规数据驱动方法的适用性会受到一定限制。为解决这一问题,文章提出了一种基于域对抗迁移网络(domain advers...基于数据驱动的方法已广泛应用于电力负荷预测领域,以提升预测精度。然而,当售电公司接入新用户时,由于缺乏用户历史用电数据,常规数据驱动方法的适用性会受到一定限制。为解决这一问题,文章提出了一种基于域对抗迁移网络(domain adversarial transfer network,DATN)的短期电力负荷预测方法。该模型利用Transformer模型作为特征提取器,以捕捉负荷数据中的动态特征和时间依赖性。随后,负荷预测器基于这些特征精准预测未来的负荷情况。通过域判别器与特征提取器的对抗学习,确保模型能够学习到深层域不变特征,同时结合多核最大均值差异(multi-kernel maximum mean discrepancy,MK-MMD)和相关性对齐(correlation alignment,CORAL)进一步减小源域与目标域数据的分布差异。所提模型在南方某省工业用户的用电数据上进行了验证,实验结果表明,在小样本场景下,该方法具备较好的预测精度和场景适应性。展开更多
文摘基于数据驱动的方法已广泛应用于电力负荷预测领域,以提升预测精度。然而,当售电公司接入新用户时,由于缺乏用户历史用电数据,常规数据驱动方法的适用性会受到一定限制。为解决这一问题,文章提出了一种基于域对抗迁移网络(domain adversarial transfer network,DATN)的短期电力负荷预测方法。该模型利用Transformer模型作为特征提取器,以捕捉负荷数据中的动态特征和时间依赖性。随后,负荷预测器基于这些特征精准预测未来的负荷情况。通过域判别器与特征提取器的对抗学习,确保模型能够学习到深层域不变特征,同时结合多核最大均值差异(multi-kernel maximum mean discrepancy,MK-MMD)和相关性对齐(correlation alignment,CORAL)进一步减小源域与目标域数据的分布差异。所提模型在南方某省工业用户的用电数据上进行了验证,实验结果表明,在小样本场景下,该方法具备较好的预测精度和场景适应性。