特高压直流输电系统阀厅内部结构复杂,采用有限元(FEM)法模拟计算其内部电场时剖分困难。为此,结合某±800 k V特高压换流站阀厅的3维全模型,基于模块化与独立化的思想,提出了实体模型区域化网格剖分方法。该方法克服了复杂模型下...特高压直流输电系统阀厅内部结构复杂,采用有限元(FEM)法模拟计算其内部电场时剖分困难。为此,结合某±800 k V特高压换流站阀厅的3维全模型,基于模块化与独立化的思想,提出了实体模型区域化网格剖分方法。该方法克服了复杂模型下网格剖分困难、对计算机硬件要求高的问题,剖分后可获得质量较高的网格。针对模型单元数较多的情况,选用不完全Cholesky分解预处理共轭梯度法(ICCG)求解复杂模型的有限元方程组。最后结合区域网格剖分与子模型技术,实现了阀厅内局部区域电场强度的准确计算。结果表明:将求解域尺寸设置为内部模型尺寸的1.3倍以上时,所得到的切割边界符合子模型计算要求,此时边界上的最大计算误差≤2%,子模型电场计算精度满足要求。展开更多
有限元法是电场数值计算中普遍采用的一种方法,当求解域内实体较多且结构复杂时,整体模型的区域离散往往难度较大。为此,基于模型的基本几何形态,提出一种针对复杂模型电场数值分析的快速建模剖分方法。以简单2维模型为例,介绍外包区域...有限元法是电场数值计算中普遍采用的一种方法,当求解域内实体较多且结构复杂时,整体模型的区域离散往往难度较大。为此,基于模型的基本几何形态,提出一种针对复杂模型电场数值分析的快速建模剖分方法。以简单2维模型为例,介绍外包区域实体生成及相互位置关系判断算法,结合有限元电场计算时的网格剖分策略,参数化实现模型表面多层网格加密,剖分的效率及质量较高。将该方法应用于特高压直流(ultra high voltage direct current,UHVDC)阀厅设备表面电场计算中,计算结果表明:该方法较子模型法计算所得结果最大误差仅为3.80%,计算效率较子模型法大幅提高。该方法实现了大型复杂模型表面网格精细化控制,对大规模有限元电场计算的快速、准确建模具有一定指导意义。展开更多
文摘特高压直流输电系统阀厅内部结构复杂,采用有限元(FEM)法模拟计算其内部电场时剖分困难。为此,结合某±800 k V特高压换流站阀厅的3维全模型,基于模块化与独立化的思想,提出了实体模型区域化网格剖分方法。该方法克服了复杂模型下网格剖分困难、对计算机硬件要求高的问题,剖分后可获得质量较高的网格。针对模型单元数较多的情况,选用不完全Cholesky分解预处理共轭梯度法(ICCG)求解复杂模型的有限元方程组。最后结合区域网格剖分与子模型技术,实现了阀厅内局部区域电场强度的准确计算。结果表明:将求解域尺寸设置为内部模型尺寸的1.3倍以上时,所得到的切割边界符合子模型计算要求,此时边界上的最大计算误差≤2%,子模型电场计算精度满足要求。
文摘有限元法是电场数值计算中普遍采用的一种方法,当求解域内实体较多且结构复杂时,整体模型的区域离散往往难度较大。为此,基于模型的基本几何形态,提出一种针对复杂模型电场数值分析的快速建模剖分方法。以简单2维模型为例,介绍外包区域实体生成及相互位置关系判断算法,结合有限元电场计算时的网格剖分策略,参数化实现模型表面多层网格加密,剖分的效率及质量较高。将该方法应用于特高压直流(ultra high voltage direct current,UHVDC)阀厅设备表面电场计算中,计算结果表明:该方法较子模型法计算所得结果最大误差仅为3.80%,计算效率较子模型法大幅提高。该方法实现了大型复杂模型表面网格精细化控制,对大规模有限元电场计算的快速、准确建模具有一定指导意义。