高比例新能源发展愿景下,为有效缩短储能回报周期、提升新能源消纳以及降低配电网碳排放,提出一种考虑精细化充放电与碳效益的配电网储能多目标双层规划模型。首先,基于Wasserstein距离和梯度惩罚的改进生成对抗网络(Wasserstein genera...高比例新能源发展愿景下,为有效缩短储能回报周期、提升新能源消纳以及降低配电网碳排放,提出一种考虑精细化充放电与碳效益的配电网储能多目标双层规划模型。首先,基于Wasserstein距离和梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)以及K-中心聚类算法(K-medoids)生成光伏典型场景。其次,建立储能系统的充放电精细化模型,并基于储能降碳量和全生命周期碳排放量构建碳效益模型。然后,构建考虑精细化充放电与碳效益的双层配电网储能规划运行模型,以日总成本最小为上层目标,对储能进行优化配置;以运行成本最小、电压偏移量最小和储能碳效益最大为下层目标,实现配电网的优化运行。再次,利用跨层关联变量建模将双层模型转化为单层多目标模型,并采用归一化法向约束法(normalized normal constraint,NNC)求解多目标问题,采用熵权-逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)选取最优折中解。最后,基于IEEE 33节点系统进行算例仿真,验证模型有效性。展开更多
文摘高比例新能源发展愿景下,为有效缩短储能回报周期、提升新能源消纳以及降低配电网碳排放,提出一种考虑精细化充放电与碳效益的配电网储能多目标双层规划模型。首先,基于Wasserstein距离和梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)以及K-中心聚类算法(K-medoids)生成光伏典型场景。其次,建立储能系统的充放电精细化模型,并基于储能降碳量和全生命周期碳排放量构建碳效益模型。然后,构建考虑精细化充放电与碳效益的双层配电网储能规划运行模型,以日总成本最小为上层目标,对储能进行优化配置;以运行成本最小、电压偏移量最小和储能碳效益最大为下层目标,实现配电网的优化运行。再次,利用跨层关联变量建模将双层模型转化为单层多目标模型,并采用归一化法向约束法(normalized normal constraint,NNC)求解多目标问题,采用熵权-逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)选取最优折中解。最后,基于IEEE 33节点系统进行算例仿真,验证模型有效性。