期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于E-Seq2Seq技术的数据驱动型机组组合智能决策方法 被引量:29
1
作者 杨楠 贾俊杰 +4 位作者 邢超 刘颂凯 陈道君 叶迪 邓逸天 《中国电机工程学报》 EI CSCD 北大核心 2020年第23期7587-7599,共13页
在能源技术变革日新月异、人工智能技术与电力系统深度融合的背景下,研究具有高适应性、高精度的机组组合智能决策方法具有重要意义。该文结合门限循环神经网络(gated recurrent unit,GRU)提出一种基于E-Seq2Seq(expand sequence to seq... 在能源技术变革日新月异、人工智能技术与电力系统深度融合的背景下,研究具有高适应性、高精度的机组组合智能决策方法具有重要意义。该文结合门限循环神经网络(gated recurrent unit,GRU)提出一种基于E-Seq2Seq(expand sequence to sequence,E-Seq2Seq)技术的数据驱动型机组组合智能决策方法。首先研究并梳理机组组合模型输入输出序列的类型与结构,形成机组组合弹性多序列映射型样本;然后研究提出一种适用于弹性多序列映射型样本的E-Seq2Seq技术;在此基础上,以GRU为神经元构建机组组合深度学习模型,并最终提出一种基于E-Seq2Seq技术的数据驱动型机组组合智能决策方法。基于IEEE118节点系统、Python环境的算例验证该文方法的正确性和有效性。 展开更多
关键词 GRU E-Seq2Seq技术 数据驱动 深度学习 机组组合决策
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部