期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于级联宽度学习与麻雀算法的非侵入式负荷分解方法 被引量:1
1
作者 白星振 康家豪 +2 位作者 尚继伟 郝春蕾 王雪梅 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第2期102-111,共10页
深度学习被广泛应用于非侵入式负荷分解中,其分解精度高但存在网络结构复杂、训练过程极度耗时等问题,并且对计算资源有一定要求,难以与嵌入式设备集成使用。对此,面向低频数据,提出一种基于级联宽度学习与麻雀算法的非侵入式负荷分解... 深度学习被广泛应用于非侵入式负荷分解中,其分解精度高但存在网络结构复杂、训练过程极度耗时等问题,并且对计算资源有一定要求,难以与嵌入式设备集成使用。对此,面向低频数据,提出一种基于级联宽度学习与麻雀算法的非侵入式负荷分解方法。首先,改进宽度学习特征节点的连接方式,构建各目标设备的级联宽度学习负荷分解网络。然后,通过麻雀搜索算法确定各目标设备分解网络的最优特征节点和增强节点数,实现负荷的高效分解。最后,基于实际数据集UK-DALE进行了仿真实验,通过与常用的非侵入式负荷分解方法进行比较,验证了所提方法的优越性。 展开更多
关键词 非侵入式 负荷分解 宽度学习 麻雀算法 特征节点级联
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部