期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural design of mid-infrared waveguide detectors based on InAs/GaAsSb superlattice
1
作者 PEI Jin-Di CHAI Xu-Liang +1 位作者 WANG Yu-Peng ZHOU Yi 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期457-463,共7页
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of... In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips. 展开更多
关键词 InAs/GaAsSb superlattice waveguide detector evanescent coupling GaAsSb waveguide
在线阅读 下载PDF
DIFNet:SAR RFI suppression network based on domain invariant features
2
作者 LYU Wen-Hao FANG Fu-Ping TIAN Yuan-Rong 《红外与毫米波学报》 CSCD 北大核心 2024年第6期775-783,共9页
Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RF... Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization. 展开更多
关键词 synthetic aperture radar radio frequency interference suppression domain invariant features SAR imaging
在线阅读 下载PDF
Deep plug-and-play self-supervised neural networks for spectral snapshot compressive imaging
3
作者 ZHANG Xing-Yu ZHU Shou-Zheng +4 位作者 ZHOU Tian-Shu QI Hong-Xing WANG Jian-Yu LI Chun-Lai LIU Shi-Jie 《红外与毫米波学报》 CSCD 北大核心 2024年第6期846-857,共12页
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it int... The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results. 展开更多
关键词 compressed sensing deep learning self-supervised coded aperture imaging
在线阅读 下载PDF
Ion implantation process and lattice damage mechanism of boron doped crystalline germanium
4
作者 HABIBA Um E CHEN Tian-Ye +8 位作者 LIU Chi-Xian DOU Wei LIU Xiao-Yan LING Jing-Wei PAN Chang-Yi WANG Peng DENG Hui-Yong SHEN Hong DAI Ning 《红外与毫米波学报》 CSCD 北大核心 2024年第6期749-754,共6页
The response wavelength of the blocked-impurity-band(BIB)structured infrared detector can reach 200µm,which is the most important very long wavelength infrared astronomical detector.The ion implantation method gr... The response wavelength of the blocked-impurity-band(BIB)structured infrared detector can reach 200µm,which is the most important very long wavelength infrared astronomical detector.The ion implantation method greatly simplifies the fabrication process of the device,but it is easy to cause lattice damage,introduce crystalline defects,and lead to the increase of the dark current of detectors.Herein,the boron-doped germanium ion implantation process was studied,and the involved lattice damage mechanism was discussed.Experimental conditions involved using 80 keV energy for boron ion implantation,with doses ranging from 1×10^(13)cm^(-2)to 3×10^(15)cm^(-2).After implantation,thermal annealing at 450℃was implemented to optimize dopant activation and mitigate the effects of ion implantation.Various sophisticated characterization techniques,including X-ray dif⁃fraction(XRD),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),and secondary ion mass spec⁃trometry(SIMS)were used to clarify lattice damage.At lower doses,no notable structural alterations were ob⁃served.However,as the dosage increased,specific micro distortions became apparent,which could be attributed to point defects and residual strain.The created lattice damage was recovered by thermal treatment,however,an irreversible strain induced by implantation still existed at heavily dosed samples. 展开更多
关键词 boron doped germanium ion implantation lattice damage
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部