由于哈萨克语基本动词短语Kz Base VP的组成结构比较复杂,并且存在歧义情况和训练语料规模不够大等问题,所以既不能直接使用基于规则的方法,又不能直接使用基于统计的方法来进行处理。所以提出了一种规则与最大熵相结合的方法对哈萨克...由于哈萨克语基本动词短语Kz Base VP的组成结构比较复杂,并且存在歧义情况和训练语料规模不够大等问题,所以既不能直接使用基于规则的方法,又不能直接使用基于统计的方法来进行处理。所以提出了一种规则与最大熵相结合的方法对哈萨克语基本动词短语(Kz Base VP)进行识别。在该混合策略系统中,根据专属Kz Base VP的特点构建了Kz Base VP搭配规则集,通过规则集对无歧义的Kz Base VP进行标注,其正确率为85.43%;运用基于统计的最大熵模型对存在歧义的Kz Base VP进行识别,根据哈萨克语的单词、词性、词缀和上下文信息等来设计最大熵模型的特征模板,并对模型进行了改进,在解码中选取概率最大的前n个上下文信息分别加入到下一个VP的特征向量中,以此类推直至文本结束,最终选出一条概率最优的VP标注。实验证明,在封闭和开发测试条件下对基本动词短语的识别准确率分别为97.23%和93.22%。展开更多
构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之...构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之间的联系进行深度挖掘,从而优化问句理解的整体性能.为了验证模型在旅游领域中的实用性和有效性,通过远程监督和人工校验构建了旅游领域问句数据集TFQD(Tourism Field Question Dataset),BBAM模型在此数据集上的槽填充任务F 1值得分为95.21%,意图分类准确率(A)为96.71%,整体识别准确率(A_(sentence))高达89.62%,显著优于多种基准模型.所提出的模型在ATIS和Snips两个公开数据集上与主流联合模型进行对比实验后,结果表明其具备一定的泛化能力.展开更多
文摘由于哈萨克语基本动词短语Kz Base VP的组成结构比较复杂,并且存在歧义情况和训练语料规模不够大等问题,所以既不能直接使用基于规则的方法,又不能直接使用基于统计的方法来进行处理。所以提出了一种规则与最大熵相结合的方法对哈萨克语基本动词短语(Kz Base VP)进行识别。在该混合策略系统中,根据专属Kz Base VP的特点构建了Kz Base VP搭配规则集,通过规则集对无歧义的Kz Base VP进行标注,其正确率为85.43%;运用基于统计的最大熵模型对存在歧义的Kz Base VP进行识别,根据哈萨克语的单词、词性、词缀和上下文信息等来设计最大熵模型的特征模板,并对模型进行了改进,在解码中选取概率最大的前n个上下文信息分别加入到下一个VP的特征向量中,以此类推直至文本结束,最终选出一条概率最优的VP标注。实验证明,在封闭和开发测试条件下对基本动词短语的识别准确率分别为97.23%和93.22%。
文摘构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之间的联系进行深度挖掘,从而优化问句理解的整体性能.为了验证模型在旅游领域中的实用性和有效性,通过远程监督和人工校验构建了旅游领域问句数据集TFQD(Tourism Field Question Dataset),BBAM模型在此数据集上的槽填充任务F 1值得分为95.21%,意图分类准确率(A)为96.71%,整体识别准确率(A_(sentence))高达89.62%,显著优于多种基准模型.所提出的模型在ATIS和Snips两个公开数据集上与主流联合模型进行对比实验后,结果表明其具备一定的泛化能力.