为了综合分析蓄热技术对可再生能源分布式能源系统的效益,本工作以大连某办公建筑群太阳能、风能、燃气互补的可再生能源分布式系统为研究对象,建立了蓄热技术与可再生能源分布式能源系统耦合评价模型,分析了蓄热技术对可再生能源分布...为了综合分析蓄热技术对可再生能源分布式能源系统的效益,本工作以大连某办公建筑群太阳能、风能、燃气互补的可再生能源分布式系统为研究对象,建立了蓄热技术与可再生能源分布式能源系统耦合评价模型,分析了蓄热技术对可再生能源分布式能源系统的电平衡、热平衡、燃料耗量及对环境温室效应、酸化效应和污染效应的影响,并利用静态经济性和动态经济性评价法,分析了水、导热油、耐火砖、水合盐、石蜡等蓄热技术应用的经济可行性。结果表明,在以电定热运行模式下,蓄热技术的引入对电平衡没有影响,但蓄热技术典型日可供暖14261.14 kW·h,减小63.95%燃气锅炉补热量,节约1822.74 m3燃气耗量,一次能源节约率为13.16%,进而减轻372165.90 g CO2造成的温室效应、278.30 g SO2造成的酸化效应和150.74 g PM2.5造成的污染效应;水、耐火砖、水合盐和石蜡蓄热技术具有较好的经济可行性,且以水蓄热技术最具优势,静态和动态投资回收期分别为4.91年和6.57年;导热油蓄热技术投资回收期较长,经济可行性较低。研究可为蓄热技术在分布式能源系统高效应用提供参考和依据。展开更多
可再生能源受天气、地域、季节限制,具有间歇性和不稳定性等属性,从而导致供需不匹配。跨季节储热是解决上述问题的有效方法。然而,传统地下跨季节储热具有储热方式单一、热量损失大等缺点。该文将水箱储热(hot water energystorage,HW...可再生能源受天气、地域、季节限制,具有间歇性和不稳定性等属性,从而导致供需不匹配。跨季节储热是解决上述问题的有效方法。然而,传统地下跨季节储热具有储热方式单一、热量损失大等缺点。该文将水箱储热(hot water energystorage,HWES)和地埋管储热(boreholethermal energy storage,BTES)方式相结合,建立跨季节复合储热系统,研究该复合储热系统的储释热温度和储释热量变化规律,揭示系统热量损失机理。结果表明:复合储热模式的储热量和释热量均大于水箱储热模式和地埋管储热模式,其储热量随着运行年限的增长而逐渐降低,释热量则随着运行年限的增长而逐渐增加;对比3种不同储热模式的土壤平均温度,得出地埋管储热模式最高,水箱储热模式最低,复合储热模式居于两者中间;此外,研究发现,复合储热模式的热量损失主要来自上边界,系统运行至第五年上边界的热量损失占比高达42.2%,因此需要对复合储热模式上边界进行有效保温,降低热量损失,提高复合储热系统效率。展开更多
文摘为了综合分析蓄热技术对可再生能源分布式能源系统的效益,本工作以大连某办公建筑群太阳能、风能、燃气互补的可再生能源分布式系统为研究对象,建立了蓄热技术与可再生能源分布式能源系统耦合评价模型,分析了蓄热技术对可再生能源分布式能源系统的电平衡、热平衡、燃料耗量及对环境温室效应、酸化效应和污染效应的影响,并利用静态经济性和动态经济性评价法,分析了水、导热油、耐火砖、水合盐、石蜡等蓄热技术应用的经济可行性。结果表明,在以电定热运行模式下,蓄热技术的引入对电平衡没有影响,但蓄热技术典型日可供暖14261.14 kW·h,减小63.95%燃气锅炉补热量,节约1822.74 m3燃气耗量,一次能源节约率为13.16%,进而减轻372165.90 g CO2造成的温室效应、278.30 g SO2造成的酸化效应和150.74 g PM2.5造成的污染效应;水、耐火砖、水合盐和石蜡蓄热技术具有较好的经济可行性,且以水蓄热技术最具优势,静态和动态投资回收期分别为4.91年和6.57年;导热油蓄热技术投资回收期较长,经济可行性较低。研究可为蓄热技术在分布式能源系统高效应用提供参考和依据。
文摘可再生能源受天气、地域、季节限制,具有间歇性和不稳定性等属性,从而导致供需不匹配。跨季节储热是解决上述问题的有效方法。然而,传统地下跨季节储热具有储热方式单一、热量损失大等缺点。该文将水箱储热(hot water energystorage,HWES)和地埋管储热(boreholethermal energy storage,BTES)方式相结合,建立跨季节复合储热系统,研究该复合储热系统的储释热温度和储释热量变化规律,揭示系统热量损失机理。结果表明:复合储热模式的储热量和释热量均大于水箱储热模式和地埋管储热模式,其储热量随着运行年限的增长而逐渐降低,释热量则随着运行年限的增长而逐渐增加;对比3种不同储热模式的土壤平均温度,得出地埋管储热模式最高,水箱储热模式最低,复合储热模式居于两者中间;此外,研究发现,复合储热模式的热量损失主要来自上边界,系统运行至第五年上边界的热量损失占比高达42.2%,因此需要对复合储热模式上边界进行有效保温,降低热量损失,提高复合储热系统效率。