期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于红外光谱PCA-LDA统计分析的麻纤维鉴别研究
1
作者 蒋晶晶 金肖克 +3 位作者 李伟松 庄莉 袁绪政 祝成炎 《丝绸》 CAS CSCD 北大核心 2024年第7期102-108,共7页
亚麻、汉麻与苎麻纤维的成分组成和物化性质高度相似,三者间的分类鉴别是纺织品检验检测领域的难点。本文对不同种类麻纤维的傅里叶变换衰减全反射红外光谱(ATR-FTIR)作主成分分析(PCA)和线性判别分析(LDA),创建麻纤维分类判别模型以鉴... 亚麻、汉麻与苎麻纤维的成分组成和物化性质高度相似,三者间的分类鉴别是纺织品检验检测领域的难点。本文对不同种类麻纤维的傅里叶变换衰减全反射红外光谱(ATR-FTIR)作主成分分析(PCA)和线性判别分析(LDA),创建麻纤维分类判别模型以鉴别三种易混麻纤维。选取亚麻、汉麻和苎麻纤维各60组作为样品集进行脱胶清洗处理并采集ATR-FTIR光谱。光谱归一化后对800~2000 cm-1波长的光谱作主成分分析,分析结果显示:随着主成分个数增加,主成分分数依据麻纤维类别逐渐显现聚类趋势,同时前12个主成分对归一化红外光谱数据的累计贡献率超过99.5%。以训练集前12主成分数为自变量,以麻纤维种类为因变量,通过线性判别分析构建了分类判别模型(典型判别函数和分类函数)。模型验证结果显示:典型判别函数可使前12个主成分分数矩阵根据麻纤维样品类型形成良好的聚类,分类函数对训练集和测试集中所有纤维样品的分类准确率达到100%。此外,PCA-LDA分类判别模型留一交叉验证的分类准确率仍能达到99.6%。结果表明,不同类别麻纤维的ATR-FTIR光谱存在差异,基于麻纤维ATR-FTIR光谱的PCA-LDA统计分析可实现亚麻、汉麻和苎麻三种易混麻纤维的快速无损鉴别。 展开更多
关键词 亚麻 汉麻 苎麻 鉴别 红外光谱 主成分分析 线性判别分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部