期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的冻土区融沉变形管段识别方法 被引量:4
1
作者 刘燊 刘啸奔 +3 位作者 李睿 李博 陈朋超 张宏 《石油机械》 北大核心 2022年第3期106-114,共9页
目前工业界采用人工识别的方法,对整条管线的惯性检测单元(IMU)应变检测数据进行逐段识别的做法存在耗时多、识别效率不高以及判断标准不一致等问题。鉴于此,通过建立机器学习模型,提出了弯曲变形危险管段智能识别方法,实现了对冻土区... 目前工业界采用人工识别的方法,对整条管线的惯性检测单元(IMU)应变检测数据进行逐段识别的做法存在耗时多、识别效率不高以及判断标准不一致等问题。鉴于此,通过建立机器学习模型,提出了弯曲变形危险管段智能识别方法,实现了对冻土区融沉变形管段的智能识别。首先统计了漠大一线冻土区管线中弯曲应变值超过0.125%的管段,包括弯头段、凹陷段和融沉导致的弯曲变形段等,使用1阶数字低通滤波法降低IMU应变检测数据中的噪声干扰,然后结合几何/漏磁检测数据截取IMU应变检测数据中不同管段类型的样本数据,从中提取了11种典型数据特征值,利用主成分分析法对11种特征值进行降维处理,最后建立决策树和随机森林模型进行识别分类。研究结果表明,不同管段类型的长度特征是影响模型分类效果的重要因素,在测试集中决策树模型出现了过拟合,识别准确率大幅下降,随机森林模型识别准确率达到了90%以上。该识别方法为管线完整性评价提供了技术基础。 展开更多
关键词 IMU 弯曲应变 冻胀融沉 机器学习 智能识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部