盈余功率积累可能诱发基于模块化多电平换流器的高压柔性直流输电系统(high-voltage direct current based on the modular multilevel converter,MMC-HVDC)过压闭锁,乃至引发海上风电场机组失步或受端电网低频减载。现有降压或升频等...盈余功率积累可能诱发基于模块化多电平换流器的高压柔性直流输电系统(high-voltage direct current based on the modular multilevel converter,MMC-HVDC)过压闭锁,乃至引发海上风电场机组失步或受端电网低频减载。现有降压或升频等直流电压控制方法仅针对伪双极接线,缺乏讨论不同控制模式的换流器间协同原则;且控制参考值未能自适应受端电网的故障严重程度,导致海上风电场有功功率调节过量。该文基于受端电网故障下MMC-HVDC平均值模型,解析了海上正负极换流器和风电场的功率耦合特性,提出了交流母线电压控制极换流器平衡换流站间有功功率,有功和无功功率控制极换流站抑制极间不平衡的协同原理。通过解析海上风电场在交流母线电压控制极换流器降压作用下的功率外特性,提出了恰好避免直流电压越限的临界交流母线电压计算方法。通过解析使得受端换流站有功电流受限的交流母线电压作为启动门槛,提出了受端电网故障下真双极MMC-HVDC电压协同控制方法。理论分析和仿真结果表明,所提方法令海上正负极换流器分别运行于临界交流母线电压和抑制极间不平衡的有功功率,可在避免直流电压越限的前提下,最大限度提升MMC-HVDC在受端电网故障工况下的有功功率传输能力。展开更多
文摘针对智能电网中移动用户(如远程巡检设备、移动维护设备等)在窃听威胁下的数据传输问题,提出了一种基于空地一体化的无人机(Unmanned Aerial Vehicle,UAV)辅助智能电网移动用户通信系统。该系统利用混合智能反射表面(Hybrid Reconfigurable Intelligent Surfaces,HRIS)与UAV协同工作,通过优化基站(Base Station,BS)的波束赋形和HRIS的反射系数矩阵,并采用双深度确定性策略梯度(Twin Deep Deterministic Policy Gradient,TDDPG)算法进行求解,在满足系统总能耗和通信服务质量(Quality of Service,QoS)要求的约束下,最大化通信系统的保密能效(Secrecy Energy Efficiency,SEE),确保移动设备的数据传输安全性和通信质量。仿真结果验证了所提模型和通信策略的有效性,保密速率相较于传统方案提升约36.8%,从物理层显著提高了智能电网中移动业务通信的安全性和能效。
文摘盈余功率积累可能诱发基于模块化多电平换流器的高压柔性直流输电系统(high-voltage direct current based on the modular multilevel converter,MMC-HVDC)过压闭锁,乃至引发海上风电场机组失步或受端电网低频减载。现有降压或升频等直流电压控制方法仅针对伪双极接线,缺乏讨论不同控制模式的换流器间协同原则;且控制参考值未能自适应受端电网的故障严重程度,导致海上风电场有功功率调节过量。该文基于受端电网故障下MMC-HVDC平均值模型,解析了海上正负极换流器和风电场的功率耦合特性,提出了交流母线电压控制极换流器平衡换流站间有功功率,有功和无功功率控制极换流站抑制极间不平衡的协同原理。通过解析海上风电场在交流母线电压控制极换流器降压作用下的功率外特性,提出了恰好避免直流电压越限的临界交流母线电压计算方法。通过解析使得受端换流站有功电流受限的交流母线电压作为启动门槛,提出了受端电网故障下真双极MMC-HVDC电压协同控制方法。理论分析和仿真结果表明,所提方法令海上正负极换流器分别运行于临界交流母线电压和抑制极间不平衡的有功功率,可在避免直流电压越限的前提下,最大限度提升MMC-HVDC在受端电网故障工况下的有功功率传输能力。