期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多元变分模态分解和混合深度神经网络的短期光伏功率预测
被引量:
7
1
作者
郭威
孙胜博
+2 位作者
陶鹏
徐建云
白新雷
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第4期489-499,共11页
针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率...
针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率预测方法。首先,采用MVMD对光伏功率及多维气象序列进行时频同步分析,将其分解为频率对齐的多元本征模态函数,从而降低序列中非线性和波动性的影响。其次,针对多元本征模态函数,分别建立基于混合深度神经网络的预测模型。该模型采用卷积神经网络和双向长短时记忆神经网络来分别提取光伏功率及气象序列的空间相关特征和时间相关特征,并采用注意力机制来增强对重要时间点特征的学习权重。此外,使用残差连接来加快网络的训练速度以及缓解过拟合问题。通过实际工程实验分析,验证了该文方法的优越性。
展开更多
关键词
光伏
预测
神经网络
多元变分模态分解
注意力机制
残差连接
在线阅读
下载PDF
职称材料
题名
基于多元变分模态分解和混合深度神经网络的短期光伏功率预测
被引量:
7
1
作者
郭威
孙胜博
陶鹏
徐建云
白新雷
机构
国家电网公司河北省电力有限公司营销服务中心
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第4期489-499,共11页
基金
河北省重大科技成果转化专项(22284504Z)。
文摘
针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率预测方法。首先,采用MVMD对光伏功率及多维气象序列进行时频同步分析,将其分解为频率对齐的多元本征模态函数,从而降低序列中非线性和波动性的影响。其次,针对多元本征模态函数,分别建立基于混合深度神经网络的预测模型。该模型采用卷积神经网络和双向长短时记忆神经网络来分别提取光伏功率及气象序列的空间相关特征和时间相关特征,并采用注意力机制来增强对重要时间点特征的学习权重。此外,使用残差连接来加快网络的训练速度以及缓解过拟合问题。通过实际工程实验分析,验证了该文方法的优越性。
关键词
光伏
预测
神经网络
多元变分模态分解
注意力机制
残差连接
Keywords
photovoltaic
forecasting
neural network
multivariate variational mode decomposition
attention mechanism
residual connection
分类号
TM615 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多元变分模态分解和混合深度神经网络的短期光伏功率预测
郭威
孙胜博
陶鹏
徐建云
白新雷
《太阳能学报》
EI
CAS
CSCD
北大核心
2024
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部