期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于极限学习机的中文文本分类方法
被引量:
5
1
作者
程东生
范广璐
+2 位作者
俞雯静
伍飞
曾伟波
《重庆理工大学学报(自然科学)》
CAS
北大核心
2018年第8期156-164,205,共10页
针对当前中文文本分类方法难以平衡分类精度和学习效率的问题,提出了一种基于极限学习机(ELM)的中文文本分类方法,该方法包括预处理模块、文本特征提取模块、特征融合模块和基于极限学习机的分类模块。在分类模块中,提出采用单隐层神经...
针对当前中文文本分类方法难以平衡分类精度和学习效率的问题,提出了一种基于极限学习机(ELM)的中文文本分类方法,该方法包括预处理模块、文本特征提取模块、特征融合模块和基于极限学习机的分类模块。在分类模块中,提出采用单隐层神经网络作为分类器并使用ELM算法来训练分类器,有效地平衡模型性能和学习效率。同时分别针对不同的特征训练分类器,集成不同分类器的输出得到最后的分类结果,有效提高了平衡分类精度,并在电网档案管理系统的档案归类任务中对该模型进行应用评估。实验结果表明,该模型不仅有较高的分类精度,而且在训练和测试两个阶段模型的计算都具有较低的代价。所提方法适用于海量数据下的中文文本分类场景,具有重要的研究意义和推广价值。
展开更多
关键词
中文文本分类
极限学习机
特征融合
单隐层神经网络
电网档案管理系统
在线阅读
下载PDF
职称材料
题名
基于极限学习机的中文文本分类方法
被引量:
5
1
作者
程东生
范广璐
俞雯静
伍飞
曾伟波
机构
国家电网公司国网安徽省电力有限公司
国
网
信息通信产业集团
有限公司
福建亿榕信息技术
有限公司
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2018年第8期156-164,205,共10页
基金
国家自然科学基金资助项目(51505085)
福建省汽车电子与电驱动重点实验室(福建工程学院)项目
文摘
针对当前中文文本分类方法难以平衡分类精度和学习效率的问题,提出了一种基于极限学习机(ELM)的中文文本分类方法,该方法包括预处理模块、文本特征提取模块、特征融合模块和基于极限学习机的分类模块。在分类模块中,提出采用单隐层神经网络作为分类器并使用ELM算法来训练分类器,有效地平衡模型性能和学习效率。同时分别针对不同的特征训练分类器,集成不同分类器的输出得到最后的分类结果,有效提高了平衡分类精度,并在电网档案管理系统的档案归类任务中对该模型进行应用评估。实验结果表明,该模型不仅有较高的分类精度,而且在训练和测试两个阶段模型的计算都具有较低的代价。所提方法适用于海量数据下的中文文本分类场景,具有重要的研究意义和推广价值。
关键词
中文文本分类
极限学习机
特征融合
单隐层神经网络
电网档案管理系统
Keywords
Chinese text classification
extreme learning machine
feature fusion
single-hidden layer neural network
grid file management system
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于极限学习机的中文文本分类方法
程东生
范广璐
俞雯静
伍飞
曾伟波
《重庆理工大学学报(自然科学)》
CAS
北大核心
2018
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部