该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基...该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基于数学模型,推导IPB的网络方程,用以描述网络结构约束;其次,将电力平衡目标如电力供应和新能源消纳等与网络方程结合,推导作为IPB基本数学原理的动态方程,方程由4种过程形式组成——自然互济供电、成本互济供电、自然互济新能源消纳和成本互济新能源消纳;再次,将实际工程条件引入动态方程,分析总结工程实践用一体化电力平衡基础模式及其衍生的8种子构型;最后,通过实例验证所提理论分析的有效性和意义。展开更多
随着风电渗透率不断升高,世界各国的并网导则要求双馈风电机组具备高电压穿越(high voltage ride-through,HVRT)能力。采用传统HVRT控制策略,HVRT期间双馈风电机组可能发生超速脱网。针对该问题,根据我国国标要求,首先,基于双馈异步发电...随着风电渗透率不断升高,世界各国的并网导则要求双馈风电机组具备高电压穿越(high voltage ride-through,HVRT)能力。采用传统HVRT控制策略,HVRT期间双馈风电机组可能发生超速脱网。针对该问题,根据我国国标要求,首先,基于双馈异步发电机(doubly-fed induction generator,DFIG)的转子运动方程,推导了不发生超速脱网的DFIG定子有功功率参考值最小值的近似计算公式。其次,根据DFIG功率约束条件,阐明了HVRT期间传统控制策略下机组发生超速脱网的机理,导出了传统控制策略下机组发生超速脱网的机端电压骤升区间。在此基础上,以兼顾抑制超速脱网和无功支撑为目标,提出了有功优先结合网侧变流器(grid-side converter,GSC)的HVRT控制策略。基于PSCAD/EMTDC仿真软件,分别搭建了单台双馈风电机组和双馈风电场的HVRT仿真模型,对所提控制策略和传统控制策略进行了仿真对比分析,仿真结果验证了所提控制策略的有效性。展开更多
文摘该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基于数学模型,推导IPB的网络方程,用以描述网络结构约束;其次,将电力平衡目标如电力供应和新能源消纳等与网络方程结合,推导作为IPB基本数学原理的动态方程,方程由4种过程形式组成——自然互济供电、成本互济供电、自然互济新能源消纳和成本互济新能源消纳;再次,将实际工程条件引入动态方程,分析总结工程实践用一体化电力平衡基础模式及其衍生的8种子构型;最后,通过实例验证所提理论分析的有效性和意义。