针对传统单一水体提取方法中常见的断线问题,本文利用一种结合遥感光谱信息和DEM的自适应搜索算法提取线状水体,并评估该算法在不同空间分辨率数据提取线状水体的适用性。首先以广州市水体为对象,利用30 m Landsat OLI和16 m GF1-WFV影...针对传统单一水体提取方法中常见的断线问题,本文利用一种结合遥感光谱信息和DEM的自适应搜索算法提取线状水体,并评估该算法在不同空间分辨率数据提取线状水体的适用性。首先以广州市水体为对象,利用30 m Landsat OLI和16 m GF1-WFV影像获取归一化水体指数(NDWI);然后选取30 m分辨率的ASTER GDEM和12.5 m分辨率的ALOS高程数据获取河网数据。通过选择合适的搜索方阵和高差阈值作为提取参数提取河道数据,并针对水体指数提取结果中部分区域的断线问题,空间叠加河道数据,得到最终的河道信息。结果表明,与单一水体指数提取结果相比,水体指数结合DEM自适应搜索算法(NDWI+12.5 m DEM和NDWI+30 m DEM)提取的线状水体连续且准确,总体精度分别达90.5%和95%,特别是12.5 m DEM数据在细节捕捉方面展现出更明显优势,具有更高的精度。展开更多
文摘针对传统单一水体提取方法中常见的断线问题,本文利用一种结合遥感光谱信息和DEM的自适应搜索算法提取线状水体,并评估该算法在不同空间分辨率数据提取线状水体的适用性。首先以广州市水体为对象,利用30 m Landsat OLI和16 m GF1-WFV影像获取归一化水体指数(NDWI);然后选取30 m分辨率的ASTER GDEM和12.5 m分辨率的ALOS高程数据获取河网数据。通过选择合适的搜索方阵和高差阈值作为提取参数提取河道数据,并针对水体指数提取结果中部分区域的断线问题,空间叠加河道数据,得到最终的河道信息。结果表明,与单一水体指数提取结果相比,水体指数结合DEM自适应搜索算法(NDWI+12.5 m DEM和NDWI+30 m DEM)提取的线状水体连续且准确,总体精度分别达90.5%和95%,特别是12.5 m DEM数据在细节捕捉方面展现出更明显优势,具有更高的精度。