针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地...针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。展开更多
由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用...由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用所构建的知识体系,基于TencentPretrain框架对大规模语言预训练模型(LLM)进行指令微调,构建了ChatFlowFlood信息抽取模型,可以在少量人工标记情况下,准确自动抽取被困情况、紧缺物资等信息;在信息抽取模型的基础上,通过模糊层次分析法(FAHP)和CRITIC法(CRiteria Importance Through Intercriteria Correlation)主客观结合评定求助信息的救援优先级,帮助决策者理解灾情紧急程度。实验结果表明,在中文社交媒体数据上,与ChatFlow-7B模型相比,ChatFlowFlood模型的FBERT指标提升了73.09%。展开更多
针对差分进化(DE)算法收敛缓慢、易陷入局部最优的缺点,提出一种基于多种群自适应和历史成功参数的DE算法。首先,所有个体按适应度值被分为精英、中庸、劣势这3个子种群,并对不同子种群使用不同的变异策略,从而加强了算法开发性和探索...针对差分进化(DE)算法收敛缓慢、易陷入局部最优的缺点,提出一种基于多种群自适应和历史成功参数的DE算法。首先,所有个体按适应度值被分为精英、中庸、劣势这3个子种群,并对不同子种群使用不同的变异策略,从而加强了算法开发性和探索性之间的平衡;其次,对劣势子种群提出一种新的变异策略提高算法的多样性;再次,为了进一步加强开发性与探索性之间的平衡,限定每种策略中随机个体的候选父母范围,从而发挥不同个体之间的优势,进而提高算法的性能;最后,为了加强算法的开发性,使用历史成功参数指导参数的自适应选择,从而引领参数一直向着好的方向前进。基于CEC2014测试集的30个测试函数进行了比较实验,实验结果表明,在30维、50维问题上,相较于OLELS-DE(efficient Differential Evolution algorithm based on Orthogonal Learning and Elites Local Search mechanisms for numerical optimization),所提算法的Friedman检验的秩次等级分别提高了8.62%和22.55%。可见,所提算法的性能与求解精度更优,能有效处理全局数值优化的问题。展开更多
文摘针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。
文摘由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用所构建的知识体系,基于TencentPretrain框架对大规模语言预训练模型(LLM)进行指令微调,构建了ChatFlowFlood信息抽取模型,可以在少量人工标记情况下,准确自动抽取被困情况、紧缺物资等信息;在信息抽取模型的基础上,通过模糊层次分析法(FAHP)和CRITIC法(CRiteria Importance Through Intercriteria Correlation)主客观结合评定求助信息的救援优先级,帮助决策者理解灾情紧急程度。实验结果表明,在中文社交媒体数据上,与ChatFlow-7B模型相比,ChatFlowFlood模型的FBERT指标提升了73.09%。
文摘针对差分进化(DE)算法收敛缓慢、易陷入局部最优的缺点,提出一种基于多种群自适应和历史成功参数的DE算法。首先,所有个体按适应度值被分为精英、中庸、劣势这3个子种群,并对不同子种群使用不同的变异策略,从而加强了算法开发性和探索性之间的平衡;其次,对劣势子种群提出一种新的变异策略提高算法的多样性;再次,为了进一步加强开发性与探索性之间的平衡,限定每种策略中随机个体的候选父母范围,从而发挥不同个体之间的优势,进而提高算法的性能;最后,为了加强算法的开发性,使用历史成功参数指导参数的自适应选择,从而引领参数一直向着好的方向前进。基于CEC2014测试集的30个测试函数进行了比较实验,实验结果表明,在30维、50维问题上,相较于OLELS-DE(efficient Differential Evolution algorithm based on Orthogonal Learning and Elites Local Search mechanisms for numerical optimization),所提算法的Friedman检验的秩次等级分别提高了8.62%和22.55%。可见,所提算法的性能与求解精度更优,能有效处理全局数值优化的问题。