期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于近红外光谱技术的赣南茶油掺假快速鉴别
被引量:
8
1
作者
沈乐丞
曾秀英
+6 位作者
温志刚
张远聪
刘贤标
王玫
刘婷
范伟华
邹辉
《中国油脂》
CAS
CSCD
北大核心
2022年第6期62-67,共6页
为了探索基于近红外光谱技术快速无损鉴别掺假油茶籽油的可行性,以赣南茶油为研究对象,通过掺入不同植物油如玉米油、花生油、菜籽油、葵花籽油和大豆油等制备掺假油茶籽油,应用近红外光谱技术采集其光谱特征信息,对比不同预处理方法和...
为了探索基于近红外光谱技术快速无损鉴别掺假油茶籽油的可行性,以赣南茶油为研究对象,通过掺入不同植物油如玉米油、花生油、菜籽油、葵花籽油和大豆油等制备掺假油茶籽油,应用近红外光谱技术采集其光谱特征信息,对比不同预处理方法和主成分数,并结合线性和非线性建模方法建立油茶籽油掺假鉴别模型,以识别准确率(纯油茶籽油样品和掺假油茶籽油样品被正确判别的比例)、灵敏度(纯油茶籽油样品被正确判别为纯油茶籽油的比例)、特异性(掺假油茶籽油样品被正确判别为掺假油茶籽油的比例)作为模型的评价指标,优选出最佳模型。结果表明:二阶微分联合线性判别分析(SD-LDA)模型为最优线性模型,标准正态变量变换联合人工神经网络(SNV-ANN)模型为最优非线性模型,两个模型的识别准确率、灵敏度、特异性分别为97.58%、100%、97.33%和98.99%、100%、98.88%。SNV-ANN模型鉴别效果优于SD-LDA模型,说明非线性模型更适于油茶籽油掺假判别,该模型能更准确地鉴别油茶籽油是否掺假。
展开更多
关键词
赣南茶油
掺假鉴别
线性判别分析
人工神经网络
在线阅读
下载PDF
职称材料
题名
基于近红外光谱技术的赣南茶油掺假快速鉴别
被引量:
8
1
作者
沈乐丞
曾秀英
温志刚
张远聪
刘贤标
王玫
刘婷
范伟华
邹辉
机构
国家油茶产品质量监督检验中心/赣州市产品质量监督检验所
出处
《中国油脂》
CAS
CSCD
北大核心
2022年第6期62-67,共6页
基金
国家市场监督管理总局技术保障专项(2019YJ025)。
文摘
为了探索基于近红外光谱技术快速无损鉴别掺假油茶籽油的可行性,以赣南茶油为研究对象,通过掺入不同植物油如玉米油、花生油、菜籽油、葵花籽油和大豆油等制备掺假油茶籽油,应用近红外光谱技术采集其光谱特征信息,对比不同预处理方法和主成分数,并结合线性和非线性建模方法建立油茶籽油掺假鉴别模型,以识别准确率(纯油茶籽油样品和掺假油茶籽油样品被正确判别的比例)、灵敏度(纯油茶籽油样品被正确判别为纯油茶籽油的比例)、特异性(掺假油茶籽油样品被正确判别为掺假油茶籽油的比例)作为模型的评价指标,优选出最佳模型。结果表明:二阶微分联合线性判别分析(SD-LDA)模型为最优线性模型,标准正态变量变换联合人工神经网络(SNV-ANN)模型为最优非线性模型,两个模型的识别准确率、灵敏度、特异性分别为97.58%、100%、97.33%和98.99%、100%、98.88%。SNV-ANN模型鉴别效果优于SD-LDA模型,说明非线性模型更适于油茶籽油掺假判别,该模型能更准确地鉴别油茶籽油是否掺假。
关键词
赣南茶油
掺假鉴别
线性判别分析
人工神经网络
Keywords
Gannan oil-tea camellia seed oil
adulteration identification
linear discriminant analysis(LDA)
artificial neural network(ANN)
分类号
TS225.1 [轻工技术与工程—粮食、油脂及植物蛋白工程]
TS201.6 [轻工技术与工程—食品科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于近红外光谱技术的赣南茶油掺假快速鉴别
沈乐丞
曾秀英
温志刚
张远聪
刘贤标
王玫
刘婷
范伟华
邹辉
《中国油脂》
CAS
CSCD
北大核心
2022
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部