干旱胁迫研究中的难点之一在于减少土壤水分波动对试验结果的影响。该研究采用负压供水盆栽装置,通过调节供水负压值精确控制土壤含水率,模拟土壤干旱胁迫,研究比较3种胁迫程度(无胁迫CK、轻度和重度胁迫)、2个胁迫时期(苗期、吐丝期)...干旱胁迫研究中的难点之一在于减少土壤水分波动对试验结果的影响。该研究采用负压供水盆栽装置,通过调节供水负压值精确控制土壤含水率,模拟土壤干旱胁迫,研究比较3种胁迫程度(无胁迫CK、轻度和重度胁迫)、2个胁迫时期(苗期、吐丝期)对不同株型玉米(小株型CF1002和大株型CF3330)的水分利用效率、生物量和产量的影响,旨在分析2种株型夏玉米对不同时期、程度干旱胁迫的响应差异。结果表明:随着苗期胁迫程度加重,CF1002的水分利用效率(water use efficiency,WUE)从3.24增至3.43,而CF3330的WUE从3.70降至3.25。吐丝期轻度干旱胁迫后CF1002和CF3330的WUE较CK分别降低2.7%和24.4%,吐丝期重度胁迫后,CF1002和CF3330的WUE较CK分别降低17.4%和57.1%。与CK相比,吐丝期轻度和重度干旱胁迫使小株型和大株型玉米胁迫期耗水量下降61.3%和62.5%,灌浆中期光合速率下降22.9%和54.3%,成熟期地上部干物质质量减少24.8%和38.0%,最终减产47.9%和71.5%,以上指标大株型玉米的降幅大于小株型玉米。在生育中后期,大株型玉米光合生产和蒸腾作用更易受干旱胁迫抑制,使物质生产和积累减少,水分消耗大幅下降。针对不同株型玉米在生育后期采用不同的水分管理策略有助于降低干旱造成的损失。展开更多
It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent gra...It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent grain yield monitoring system with the sensors and DGPS(differential global positioning system),which was loaded on the combine harvester,could get the different blocks’yield and produce the yield map.In this study,a new grain yield monitoring system based on CAN bus technology was developed.The system consisted of sensor unit,data acquisition unit,GPS module and LCD(liquid crystal display)terminal.The grain yield data were collected by the grain flow sensor,and processed by the signal condition circuit.And then the grain yield data and GPS signal were transmitted to the control unit by CAN bus.With the algorithm of grain yield conversion,all the collected data including real-time grain yield,harvest area and average grain yield were displayed on the LCD terminal.Flow sensor unit included grain yield flow sensor,force impact plate and mounting bracket.The sensor frame was mounted at the top of clean grain elevator of combine harvester.When the elevator paddles rotated around the sprocket,grain was propelled towards a flat impact plate.As grain momentum was lost in the subsequent collision with the impact plate,an effective force was measured by the impact parallel-beam load cell.Along with the calibration relationship between measured force and mass flow rate,the output of the impact parallel-beam load cell could indicate the flow rate of grain yield.Data acquisition unit included power conversion circuit,sensor signal acquisition circuit,analog-to-digital conversion circuit and CAN communication circuit.It could fulfill data acquisition function,CAN communication function and interrupt handling function.LCD terminal had the function of sensor detection,the function of GPS information collection,parameter calibration,data display and storage.It could display the real-time grain yield,total yield,average yield and harvest area.In order to evaluate the grain yield monitoring system,3 experiments which included static performance experiment of grain yield flow sensor,platform test experiment of grain yield monitoring system and dynamic performance experiment on combine harvester were carried out.The result of platform test experiment showed that the system error between predicted yield and measured yield was less than 3%and the system could avoid the effect of vibration from the platform effectively.Field dynamic experiment showed that the system error was less than 5%.Both the experimental results indicated that the grain yield monitoring system could satisfy the need of practical production.展开更多
文摘干旱胁迫研究中的难点之一在于减少土壤水分波动对试验结果的影响。该研究采用负压供水盆栽装置,通过调节供水负压值精确控制土壤含水率,模拟土壤干旱胁迫,研究比较3种胁迫程度(无胁迫CK、轻度和重度胁迫)、2个胁迫时期(苗期、吐丝期)对不同株型玉米(小株型CF1002和大株型CF3330)的水分利用效率、生物量和产量的影响,旨在分析2种株型夏玉米对不同时期、程度干旱胁迫的响应差异。结果表明:随着苗期胁迫程度加重,CF1002的水分利用效率(water use efficiency,WUE)从3.24增至3.43,而CF3330的WUE从3.70降至3.25。吐丝期轻度干旱胁迫后CF1002和CF3330的WUE较CK分别降低2.7%和24.4%,吐丝期重度胁迫后,CF1002和CF3330的WUE较CK分别降低17.4%和57.1%。与CK相比,吐丝期轻度和重度干旱胁迫使小株型和大株型玉米胁迫期耗水量下降61.3%和62.5%,灌浆中期光合速率下降22.9%和54.3%,成熟期地上部干物质质量减少24.8%和38.0%,最终减产47.9%和71.5%,以上指标大株型玉米的降幅大于小株型玉米。在生育中后期,大株型玉米光合生产和蒸腾作用更易受干旱胁迫抑制,使物质生产和积累减少,水分消耗大幅下降。针对不同株型玉米在生育后期采用不同的水分管理策略有助于降低干旱造成的损失。
文摘It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent grain yield monitoring system with the sensors and DGPS(differential global positioning system),which was loaded on the combine harvester,could get the different blocks’yield and produce the yield map.In this study,a new grain yield monitoring system based on CAN bus technology was developed.The system consisted of sensor unit,data acquisition unit,GPS module and LCD(liquid crystal display)terminal.The grain yield data were collected by the grain flow sensor,and processed by the signal condition circuit.And then the grain yield data and GPS signal were transmitted to the control unit by CAN bus.With the algorithm of grain yield conversion,all the collected data including real-time grain yield,harvest area and average grain yield were displayed on the LCD terminal.Flow sensor unit included grain yield flow sensor,force impact plate and mounting bracket.The sensor frame was mounted at the top of clean grain elevator of combine harvester.When the elevator paddles rotated around the sprocket,grain was propelled towards a flat impact plate.As grain momentum was lost in the subsequent collision with the impact plate,an effective force was measured by the impact parallel-beam load cell.Along with the calibration relationship between measured force and mass flow rate,the output of the impact parallel-beam load cell could indicate the flow rate of grain yield.Data acquisition unit included power conversion circuit,sensor signal acquisition circuit,analog-to-digital conversion circuit and CAN communication circuit.It could fulfill data acquisition function,CAN communication function and interrupt handling function.LCD terminal had the function of sensor detection,the function of GPS information collection,parameter calibration,data display and storage.It could display the real-time grain yield,total yield,average yield and harvest area.In order to evaluate the grain yield monitoring system,3 experiments which included static performance experiment of grain yield flow sensor,platform test experiment of grain yield monitoring system and dynamic performance experiment on combine harvester were carried out.The result of platform test experiment showed that the system error between predicted yield and measured yield was less than 3%and the system could avoid the effect of vibration from the platform effectively.Field dynamic experiment showed that the system error was less than 5%.Both the experimental results indicated that the grain yield monitoring system could satisfy the need of practical production.