激光器在信息通信、智能制造等关键技术中发挥着核心作用。然而,传统半导体激光器尽管结构紧凑、效率高,却面临品质因子(Quality Factor,简称Q值)有限、光束质量较差及难以实现特殊光场等瓶颈。连续域中束缚态(Bound States in the Cont...激光器在信息通信、智能制造等关键技术中发挥着核心作用。然而,传统半导体激光器尽管结构紧凑、效率高,却面临品质因子(Quality Factor,简称Q值)有限、光束质量较差及难以实现特殊光场等瓶颈。连续域中束缚态(Bound States in the Continuum,BIC)是一种存在于辐射连续谱中的局域模态,因其与辐射通道完全解耦,可实现能量完全局域化,理论上具备无限大的Q值。基于BIC的激光器兼具高Q值与高局域化效应,能有效降低激光阈值,并显著抑制多模竞争从而输出高纯度单模激光。当前研究聚焦于通过结构设计提升BIC模式的稳定性与耦合效率,并探索其在集成光子学、拓扑激光器等前沿方向的应用。未来,BIC激光器有望在片上集成、主动调控等方面取得突破,推动高性能激光技术的发展。展开更多
文摘激光器在信息通信、智能制造等关键技术中发挥着核心作用。然而,传统半导体激光器尽管结构紧凑、效率高,却面临品质因子(Quality Factor,简称Q值)有限、光束质量较差及难以实现特殊光场等瓶颈。连续域中束缚态(Bound States in the Continuum,BIC)是一种存在于辐射连续谱中的局域模态,因其与辐射通道完全解耦,可实现能量完全局域化,理论上具备无限大的Q值。基于BIC的激光器兼具高Q值与高局域化效应,能有效降低激光阈值,并显著抑制多模竞争从而输出高纯度单模激光。当前研究聚焦于通过结构设计提升BIC模式的稳定性与耦合效率,并探索其在集成光子学、拓扑激光器等前沿方向的应用。未来,BIC激光器有望在片上集成、主动调控等方面取得突破,推动高性能激光技术的发展。