期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
并行池化注意力及多特征融合增强目标检测方法 被引量:1
1
作者 程杰 卞长智 +2 位作者 张婧 李小霞 丁楠 《现代电子技术》 北大核心 2025年第5期59-67,共9页
针对通道注意力降维时导致细节信息损失和特征融合不充分的问题,提出一种并行池化注意力及多特征融合增强方法。首先,对输入图像使用两种池化模块并行处理,实现特征注意力增强。其中:熵引导池化模块利用通道信息熵生成特征权重系数,加... 针对通道注意力降维时导致细节信息损失和特征融合不充分的问题,提出一种并行池化注意力及多特征融合增强方法。首先,对输入图像使用两种池化模块并行处理,实现特征注意力增强。其中:熵引导池化模块利用通道信息熵生成特征权重系数,加强边缘纹理等细节信息;方向感知池化模块捕获图像在垂直和水平方向上的空间方向信息,再计算通道均值实现逐步降维保留关键特征。其次,多特征融合增强模块利用特征图尺度的对数函数自适应选取卷积核的大小,再将卷积后的特征分组重塑为与输入图像维度相同的通道、高度和宽度方向上的三个特征子图,并进行元素相乘获得增强特征图。最后,增强特征图与输入图像加权融合,同时增强目标的位置和细节信息。实验结果表明,文中方法在参数量不变的情况下,在VOC2007数据集上,mAP@0.5较YOLOX和YOLOv7分别提升4.62%、4.46%,在COCO数据集上,mAP@0.5较YOLOX和YOLOv7分别提升4.57%、4.63%。 展开更多
关键词 通道注意力 降维 并行池化 多特征融合增强 自适应 目标检测
在线阅读 下载PDF
融合改进A^(*)和速度障碍法的无人机局部避障规划
2
作者 方祝平 李理 +2 位作者 唐荣 吴均 刘知贵 《电光与控制》 北大核心 2025年第7期7-12,共6页
针对无人机在全局路径规划和飞行过程中对局部动态障碍物的规避问题,设计一种融合改进A*和速度障碍法的实时动态避障算法。在传统A^(*)算法中引入基于ESDF地图的自适应节点拓展步长策略,减少路径搜索过程中的冗余节点,并通过B-spline曲... 针对无人机在全局路径规划和飞行过程中对局部动态障碍物的规避问题,设计一种融合改进A*和速度障碍法的实时动态避障算法。在传统A^(*)算法中引入基于ESDF地图的自适应节点拓展步长策略,减少路径搜索过程中的冗余节点,并通过B-spline曲线平滑初始路径。结合无人机动力学模型,设计三维空间下的速度障碍法,实现局部动态环境下的实时避障。在局部避障路径和全局航路点之间引入吸引力函数,使无人机在局部避障之后平滑回归到全局路径,避免陷入局部最优状态。仿真实验表明,该算法在全局路径规划时搜索时间节省64.5%,节点探索数量减少62.2%,无人机在动态环境中能够有效避开障碍物。 展开更多
关键词 无人机 A^(*)算法 速度障碍法 动态避障 路径规划
在线阅读 下载PDF
引入解耦残差自注意力的边界交叉监督语义分割网络
3
作者 姜坤元 李小霞 +4 位作者 王利 曹耀丹 张晓强 丁楠 周颖玥 《计算机应用》 北大核心 2025年第4期1120-1129,共10页
针对内镜语义分割网络中病灶边缘信息丢失和大面积病灶分割不全的问题,提出一种引入解耦残差自注意力(DRA)的边界交叉监督语义分割网络(BCS-SegNet)。首先,引入DRA,以增强网络对远距离关联性病灶的学习能力;其次,构建跨级交叉融合(CLF)... 针对内镜语义分割网络中病灶边缘信息丢失和大面积病灶分割不全的问题,提出一种引入解耦残差自注意力(DRA)的边界交叉监督语义分割网络(BCS-SegNet)。首先,引入DRA,以增强网络对远距离关联性病灶的学习能力;其次,构建跨级交叉融合(CLF)模块,从而将编码结构中的多级特征图逐对组合,进而实现在低计算成本下图像细节与语义信息的融合;最后,使用多方向多尺度的二维Gabor变换提取边缘信息,并使用空间注意力加权特征图中的边缘特征,以监督分割网络的解码过程,从而在像素级别上提供更精准的类内分割一致性。实验结果表明,在ISIC2018皮肤镜和Kvasir-SEG/CVC-ClinicDB结肠镜数据集上,BCS-SegNet的平均交并比(mIoU)和Dice系数分别为84.27%、90.68%和79.24%、87.91%;在自建食管内镜数据集上,BCS-SegNet的mIoU和Dice系数分别为82.73%和90.84%,mIoU相较于U-net和UCTransNet分别提升了3.30%和4.97%。可见,所提网络可以达到更完整的分割区域和更清晰的边缘细节等视觉效果。 展开更多
关键词 食管内镜图像 医学图像分割 自注意力机制 二维Gabor变换 多尺度边缘特征
在线阅读 下载PDF
融合思维链与知识图谱的中医问答模型
4
作者 苑中旭 李理 +2 位作者 何凡 杨秀 韩东轩 《计算机工程与应用》 北大核心 2025年第4期158-166,共9页
针对中医问诊领域数据规模大,以及医生在问诊中主观性强、数据对齐难的问题,提出了一种中医问答领域的大语言模型ChatTCM。利用大语言模型(large language model,LLM)在处理自然语言理解与文本生成方面的强大能力,通过对大语言模型进行... 针对中医问诊领域数据规模大,以及医生在问诊中主观性强、数据对齐难的问题,提出了一种中医问答领域的大语言模型ChatTCM。利用大语言模型(large language model,LLM)在处理自然语言理解与文本生成方面的强大能力,通过对大语言模型进行微调,使LLM具有在中医问答领域的专业知识和能力,避免模型在生成时出现幻觉的现象。提取中医书籍中的三元组信息,构建中医知识图谱数据库,实现中医知识的数据对齐与系统化整合,并为大语言模型生成答案提供背景知识;结合思维链(chain-of-thought,COT)与知识图谱数据库的动态交互,生成客观的推理过程,确保诊疗建议具有科学依据;把思维链与知识图谱的推理结果作为新知识进行存储,从而不断扩展本地知识库。与中医领域的HuaTuoGPT模型对比实验表明,ChatTCM模型在MedChatZH数据集上BLEU-4和ROUGE-L的评测指标分别提高了10.6和10.5个百分点,并且在已开源的数据集上准确度达到了70%,比同类型的MedChatZH模型提升了10个百分点。 展开更多
关键词 大语言模型 微调 知识图谱 思维链 中医知识
在线阅读 下载PDF
级联离散小波多频带分解注意力图像去噪方法 被引量:1
5
作者 王力 李小霞 +2 位作者 秦佳敏 朱贺 周颖玥 《计算机应用研究》 CSCD 北大核心 2024年第1期288-295,共8页
针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损... 针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损失。多频带特征增强模块使用不同尺度的卷积核并行处理高低频特征,在子网络每一级下重复使用两次,可增强全局和局部的关键特征信息。多频带分解注意力模块通过注意力评估纹理细节成分的重要性并加权不同频带的细节特征,有助于多频带特征增强模块更好地区分噪声和边缘细节。多频带选择特征融合模块融合多尺度多频带特征增强选择性特征,提高模型对于不同尺度噪声的去除能力。在SIDD和DND数据集上,所提方法的PSNR/SSIM指标分别达到了39.35 dB/0.918、39.72 dB/0.955。实验结果表明,该方法的性能优于主流去噪方法,同时具有更清晰的纹理细节和边缘等视觉效果。 展开更多
关键词 图像去噪 高频信息 级联离散小波变换 多频带特征增强 多频带分解注意力
在线阅读 下载PDF
对比特征增强的高架库小目标检测方法
6
作者 朱贺 卞长智 +3 位作者 张婧 王力 李小霞 陈禹伶 《计算机工程与应用》 CSCD 北大核心 2024年第22期347-354,共8页
针对高架库区场景下安全帽检测中目标特征信息少、分类精度低等问题,提出小目标对比特征增强网络。首先提出快速空间金字塔池化跨层融合模块,减少空间维度上的目标信息丢失。然后提出小目标对比特征增强模块,使用双路并行空洞卷积获取... 针对高架库区场景下安全帽检测中目标特征信息少、分类精度低等问题,提出小目标对比特征增强网络。首先提出快速空间金字塔池化跨层融合模块,减少空间维度上的目标信息丢失。然后提出小目标对比特征增强模块,使用双路并行空洞卷积获取不同感受野,利用通道注意力获取特征图在通道维度上更为精准的特征信息,采用浅层特征图减去深层特征图的方法削弱浅层特征图中大目标信息,以增强小目标特征信息表达。加入高效通道注意力解耦检测头,通过将检测头解耦为分类和回归分支,分别学习目标的语义信息和位置信息。实验结果表明,在TT100K数据集上,所提方法的mAP@0.5比基准网络YOLOv5提高了6.4个百分点,比YOLOv7提高了1.9个百分点。在自建高架库数据集上,所提方法的mAP@0.5相比基准网络提高了4.9个百分点,其中安全帽的mAP@0.5相比基准网络提高了6.9个百分点。 展开更多
关键词 小目标检测 高架库 跨层融合 对比特征增强 解耦检测头 YOLOv5
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部