少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learnin...少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性.展开更多
人脸表情特征选择是人脸表情识别研究领域关注的一个热点。基于量子遗传算法与邻域粗糙集理论,文章提出一种新的人脸表情特征选择方法(Feature Selection based on Neighborhood Rough Set Theoryand Quantum Genetic Algorithm,简称FSN...人脸表情特征选择是人脸表情识别研究领域关注的一个热点。基于量子遗传算法与邻域粗糙集理论,文章提出一种新的人脸表情特征选择方法(Feature Selection based on Neighborhood Rough Set Theoryand Quantum Genetic Algorithm,简称FSNRSTQGA),以邻域粗糙集理论为基础,定义了最优特征集的适应度函数来评价表情特征子集的选择效果;并结合量子遗传算法进化策略,提出了一种表情特征选择方法。Cohn-Kanade表情数据集上的仿真实验结果表明了该方法的有效性。展开更多
文摘少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性.
文摘人脸表情特征选择是人脸表情识别研究领域关注的一个热点。基于量子遗传算法与邻域粗糙集理论,文章提出一种新的人脸表情特征选择方法(Feature Selection based on Neighborhood Rough Set Theoryand Quantum Genetic Algorithm,简称FSNRSTQGA),以邻域粗糙集理论为基础,定义了最优特征集的适应度函数来评价表情特征子集的选择效果;并结合量子遗传算法进化策略,提出了一种表情特征选择方法。Cohn-Kanade表情数据集上的仿真实验结果表明了该方法的有效性。