针对常用进港航班排序数学模型(总延迟时间最小和总延迟成本最小)中存在的问题,选取空中延误成本、旅客延误成本、后续延误成本以及环境污染成本4个指标综合建立一种改进的总延迟成本最小数学模型。在分析已有的基于模拟退火的粒子群算...针对常用进港航班排序数学模型(总延迟时间最小和总延迟成本最小)中存在的问题,选取空中延误成本、旅客延误成本、后续延误成本以及环境污染成本4个指标综合建立一种改进的总延迟成本最小数学模型。在分析已有的基于模拟退火的粒子群算法(SA-PSO:particle swarm optimization based on simulated annealing)优化进港航班排序时寻优能力不足、收敛速度慢的基础上,采用一种线性微分递减(LDD:linear differential decrease)的退火策略,从而可以有效地解决进港航班排序问题。实验结果表明,与FCFS(first come first serve)、PSO以及SA-PSO算法相比,LDD-SA-PSO算法在进港航班优化问题上具有较好的寻优能力和收敛速度,同时改进数学模型中参数选择对优化结果也具有明显影响。展开更多
Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D traject...Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D trajectory planning related studies have focused on manned aircraft instead of unmanned aerial vehicles(UAVs).This paper focuses on planning conflict-free 4D trajectories for fixed-wing UAVs before the departure or during the flight planning.A 4D trajectory generation technique based on Tau theory is developed,which can incorporate the time constraints over the waypoint sequence in the flight plan.Then the 4D trajectory is optimized by the particle swarm optimization(PSO)algorithm.Further simulations are performed to demonstrate the effectiveness of the proposed method,which would offer a good chance for integrating UAV into civil airspace in the future.展开更多
文摘针对常用进港航班排序数学模型(总延迟时间最小和总延迟成本最小)中存在的问题,选取空中延误成本、旅客延误成本、后续延误成本以及环境污染成本4个指标综合建立一种改进的总延迟成本最小数学模型。在分析已有的基于模拟退火的粒子群算法(SA-PSO:particle swarm optimization based on simulated annealing)优化进港航班排序时寻优能力不足、收敛速度慢的基础上,采用一种线性微分递减(LDD:linear differential decrease)的退火策略,从而可以有效地解决进港航班排序问题。实验结果表明,与FCFS(first come first serve)、PSO以及SA-PSO算法相比,LDD-SA-PSO算法在进港航班优化问题上具有较好的寻优能力和收敛速度,同时改进数学模型中参数选择对优化结果也具有明显影响。
文摘Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D trajectory planning related studies have focused on manned aircraft instead of unmanned aerial vehicles(UAVs).This paper focuses on planning conflict-free 4D trajectories for fixed-wing UAVs before the departure or during the flight planning.A 4D trajectory generation technique based on Tau theory is developed,which can incorporate the time constraints over the waypoint sequence in the flight plan.Then the 4D trajectory is optimized by the particle swarm optimization(PSO)algorithm.Further simulations are performed to demonstrate the effectiveness of the proposed method,which would offer a good chance for integrating UAV into civil airspace in the future.