期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
可见光谱图与深度神经网络的垩白大米检测方法
被引量:
7
1
作者
林萍
张华哲
+2 位作者
何坚强
邹志勇
陈永明
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020年第1期233-238,共6页
针对传统垩白大米检测主观随意性大、可重复性低、检测过程耗时费力、准确率低等问题,提出一种基于可见光谱图结合深度学习算法的垩白大米检测手段。用CCD彩色摄像机获取垩白大米和正常大米可见光谱图,对图像进行旋转、翻转以及调整对...
针对传统垩白大米检测主观随意性大、可重复性低、检测过程耗时费力、准确率低等问题,提出一种基于可见光谱图结合深度学习算法的垩白大米检测手段。用CCD彩色摄像机获取垩白大米和正常大米可见光谱图,对图像进行旋转、翻转以及调整对比度等随机图像变换方式提升网络训练数据集,防止深度检测模型在学习过程中出现过拟合现象。构建了7层深层次卷积神经网络模型,包括卷积层、池化层、全连接层和输入输出层,通过网络模型对采样的大米可见光谱图集进行卷积与池化操作,采用迭代学习训练方法获取大米可见光谱图在卷积层输出的特征参数,采用连接非线性ReLU激活函数来降低训练时间,以加速大米可见光谱图有效抽象特征提取的收敛速度;然后将深度神经网络嵌入池化层,对大米特征降维以获取能够表达正常大米和垩白大米可鉴别显著意义特征;最后在全连接层输出进行分类,从而实现对垩白大米的精确识别。基于可见光谱图的大米垩白深度检测方法比传统基于可见光谱图的垩白大米鉴别特征提取方法免去了复杂的特征提取步骤,由于卷积网络提取的特征对特定目标具有更鲁棒的表达,算法精度较高且复杂度比较小,泛化效果更好,获得识别精度达到90%,比基于传统特征提取的垩白大米鉴别方法识别精度高, SIFT+SVM, PHOG+SVM和GIST+SVM模型识别精度分别为70.83%, 77.08%和79.16%。提出的方法为当前我国现代农业生产中实现大米品质自动化快速精准检测提供了理论依据和有效的技术手段,对于现阶段实现大米品质人工智能检测产生实际意义。
展开更多
关键词
可见光谱图
大米
垩白
深度神经网络
人工智能
在线阅读
下载PDF
职称材料
题名
可见光谱图与深度神经网络的垩白大米检测方法
被引量:
7
1
作者
林萍
张华哲
何坚强
邹志勇
陈永明
机构
盐城工
学院
电气工程
学院
四川农业大学电机学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020年第1期233-238,共6页
基金
国家自然科学基金项目(31601227,31501221,61803325)
江苏省自然科学基金项目(BK20161310,BK20181049)资助
文摘
针对传统垩白大米检测主观随意性大、可重复性低、检测过程耗时费力、准确率低等问题,提出一种基于可见光谱图结合深度学习算法的垩白大米检测手段。用CCD彩色摄像机获取垩白大米和正常大米可见光谱图,对图像进行旋转、翻转以及调整对比度等随机图像变换方式提升网络训练数据集,防止深度检测模型在学习过程中出现过拟合现象。构建了7层深层次卷积神经网络模型,包括卷积层、池化层、全连接层和输入输出层,通过网络模型对采样的大米可见光谱图集进行卷积与池化操作,采用迭代学习训练方法获取大米可见光谱图在卷积层输出的特征参数,采用连接非线性ReLU激活函数来降低训练时间,以加速大米可见光谱图有效抽象特征提取的收敛速度;然后将深度神经网络嵌入池化层,对大米特征降维以获取能够表达正常大米和垩白大米可鉴别显著意义特征;最后在全连接层输出进行分类,从而实现对垩白大米的精确识别。基于可见光谱图的大米垩白深度检测方法比传统基于可见光谱图的垩白大米鉴别特征提取方法免去了复杂的特征提取步骤,由于卷积网络提取的特征对特定目标具有更鲁棒的表达,算法精度较高且复杂度比较小,泛化效果更好,获得识别精度达到90%,比基于传统特征提取的垩白大米鉴别方法识别精度高, SIFT+SVM, PHOG+SVM和GIST+SVM模型识别精度分别为70.83%, 77.08%和79.16%。提出的方法为当前我国现代农业生产中实现大米品质自动化快速精准检测提供了理论依据和有效的技术手段,对于现阶段实现大米品质人工智能检测产生实际意义。
关键词
可见光谱图
大米
垩白
深度神经网络
人工智能
Keywords
Visible spectrogram
Rice
Chalkiness
Deep learning
Artificial intelligence
分类号
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
可见光谱图与深度神经网络的垩白大米检测方法
林萍
张华哲
何坚强
邹志勇
陈永明
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2020
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部