期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ERNIE+DPCNN+BiGRU的农业新闻文本分类 被引量:13
1
作者 杨森淇 段旭良 +2 位作者 肖展 郎松松 李志勇 《计算机应用》 CSCD 北大核心 2023年第5期1461-1466,共6页
针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首... 针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。 展开更多
关键词 新闻文本分类 农业工程 ERNIE 深度金字塔卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于卷积神经网络的小麦产量预估方法 被引量:7
2
作者 鲍烈 王曼韬 +2 位作者 刘江川 文波 明月 《浙江农业学报》 CSCD 北大核心 2020年第12期2244-2252,共9页
小麦产量是评估农业生产力的重要指标之一,针对小麦产量人工预估困难,提出将卷积神经网络运用于小麦产量预估,为农业生产力的预估提供参考,指导农业生产管理决策。利用无人机分别在河南省新乡、漯河两地进行图片采集,并以之构建麦穗数据... 小麦产量是评估农业生产力的重要指标之一,针对小麦产量人工预估困难,提出将卷积神经网络运用于小麦产量预估,为农业生产力的预估提供参考,指导农业生产管理决策。利用无人机分别在河南省新乡、漯河两地进行图片采集,并以之构建麦穗数据集,分为正样本(麦穗)和负样本(叶子和背景)。针对小麦常规的生理形态和生长环境,设计卷积神经网络识别模型,以图像金字塔构建多尺度滑动窗口,以非极大值抑制(NMS)去除重叠率较高的目标框,实现对单位面积内麦穗的计数,并利用随机采样的方式对大田麦穗进行单位面积图像采样,以采样图像中麦穗数量的平均值作为产量预估基准,进一步实现麦穗产量预估。随机抽取100幅不同小麦图片进行测试,与人工计数结果进行对比,准确率达到97.30%,漏检率为0.34%,误检率为2.36%,误差率为2.70%。试验结果表明,此方法能够克服环境中的多种噪声干扰,能够在不同光照条件下对麦穗进行计数和产量预估。 展开更多
关键词 图像处理 深度学习 卷积神经网络 图像金字塔 产量预估
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部