为有效解决玉米雄穗无人机识别过程中因雄穗尺寸过小造成的漏检、识别速度慢、模型体积大等问题,通过添加注意力机制、融入轻量化模块和优化损失函数,建立了一种改进YOLOv8n卷积神经网络的玉米雄穗检测模型YOLOv8n-maize。结果表明:改...为有效解决玉米雄穗无人机识别过程中因雄穗尺寸过小造成的漏检、识别速度慢、模型体积大等问题,通过添加注意力机制、融入轻量化模块和优化损失函数,建立了一种改进YOLOv8n卷积神经网络的玉米雄穗检测模型YOLOv8n-maize。结果表明:改进后的模型在测试集上的平均精度均值(Mean average precision,m AP)达97.8%,比原模型提高了2.6%;模型计算量(Floating point operations,FLOPs)减少了15.8%,参数量(Parameters,Params)体积缩小了17.6%。这种高精度、小体积模型能够满足玉米雄穗快速识别的需求,可为无人机机载平台的部署提供关键技术支持。展开更多
文摘为有效解决玉米雄穗无人机识别过程中因雄穗尺寸过小造成的漏检、识别速度慢、模型体积大等问题,通过添加注意力机制、融入轻量化模块和优化损失函数,建立了一种改进YOLOv8n卷积神经网络的玉米雄穗检测模型YOLOv8n-maize。结果表明:改进后的模型在测试集上的平均精度均值(Mean average precision,m AP)达97.8%,比原模型提高了2.6%;模型计算量(Floating point operations,FLOPs)减少了15.8%,参数量(Parameters,Params)体积缩小了17.6%。这种高精度、小体积模型能够满足玉米雄穗快速识别的需求,可为无人机机载平台的部署提供关键技术支持。