期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合语义的个性化差分隐私轨迹发布方案
1
作者 张牙 刘凤春 +2 位作者 杨光辉 张春英 任静 《信息安全研究》 北大核心 2025年第7期670-679,共10页
轨迹数据库中包含大量用户的信息,直接将其发布可能会导致个人敏感信息的泄露.用户的位置语义信息中包含大量日常活动和访问偏好信息,现有个性化差分隐私轨迹发布方案对于位置点隐私级别的判定未考虑位置点间的语义信息,仍然存在隐私性... 轨迹数据库中包含大量用户的信息,直接将其发布可能会导致个人敏感信息的泄露.用户的位置语义信息中包含大量日常活动和访问偏好信息,现有个性化差分隐私轨迹发布方案对于位置点隐私级别的判定未考虑位置点间的语义信息,仍然存在隐私性和数据可用性之间的不平衡问题.为解决上述问题,提出一种融合语义的个性化差分隐私轨迹发布方案(PRTDP),根据用户自身轨迹的移动特性进行动态隐私级别判定.首先,提出敏感位置点判定算法.利用DBSCAN聚类算法得到用户敏感位置点.接着,提出一种个性化隐私级别划分算法.基于位置点间的语义信息构建敏感位置点关系有向图模型,设计改进的PageRank算法确定位置点的隐私级别,将相应隐私级别的拉普拉斯噪声加入轨迹数据中并发布.PRTDP方案能够有效地保护用户的敏感信息,并提高轨迹数据的可用性,实验证明该方案在隐私保护程度、可用性和时间效率3个方面优于现有方案NFRP算法和FPT算法. 展开更多
关键词 个性化差分隐私 轨迹隐私保护 PAGERANK算法 轨迹数据发布 隐私预算
在线阅读 下载PDF
基于特征融合的双分支恶意代码同源性分析模型
2
作者 刘凤春 张志枫 +2 位作者 薛涛 杨光辉 魏群 《信息安全研究》 北大核心 2025年第7期594-602,共9页
在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convol... 在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convolution and Transformer-Net).首先,构建MCAT-Net双分支网络,一个分支是多分支卷积MBC(multi-branch convolution)模块,以MBC模块构建CNN分支,同时引入混合注意力机制,使网络在兼顾局部特征的同时更能关注核心特征;另一个分支是以Vi T为主干的Transformer模块,提取恶意代码图像的全局特征信息并提出下采样模块,在精细地保留全局特征的同时使Transformer与CNN的特征图在空间尺度对齐;其次,以级联的策略融合CNN分支的局部特征和Transformer分支的全局特征,解决网络只关注单一特征问题;最后,使用Softmax分类器对恶意代码家族进行同源性分析.实验结果表明,基于特征融合的双分支模型的分类准确率达到99.24%,相比单支CNN和单支Transformer模型,准确率分别提高0.11%和0.65%. 展开更多
关键词 双分支 特征融合 多分支卷积 注意力机制 下采样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部